
Threat mitigation on Genode

Genode Labs

October 5, 2016

Contents

1 Introduction 5
1.1 Motivation behind mitigation techniques 5
1.2 Compartments and structural resilience 8
1.3 Pros and cons . 11
1.4 Document structure . 11

2 Taxonomy of attacks 12
2.1 Denial of service . 12
2.2 Information gathering . 13

2.2.1 Format-string attacks . 13
2.2.2 Information-leaking error messages 14
2.2.3 Leaky parameter structures . 14
2.2.4 Cold-boot attacks . 15

2.3 Privilege escalation . 17
2.3.1 Seizing control over a foreign program 18
2.3.2 “Shellcode” injection . 21
2.3.3 Return-oriented programming (ROP) 22
2.3.4 Stack Pivoting . 22

2.4 Exploitation . 23

3 Mitigation techniques 25
3.1 Stack-smashing protection . 25

3.1.1 Function selection . 26
3.1.2 Canary-value protection . 26
3.1.3 Limitations . 26
3.1.4 Enabling SSP on Genode . 26

3.2 Pointer obfuscation . 28
3.3 Heap-overflow detection / heap protection 29

3.3.1 Integrity checks of the heap’s metadata 29
3.3.2 Randomization of heap allocations 29

1

Contents

3.3.3 Guard pages between heap chunks 30
3.3.4 Cookies at the bounds of heap blocks 30
3.3.5 Protecting the heap on Genode . 30

3.4 Address-space layout randomization (ASLR) 32
3.4.1 Randomizing library load addresses 32
3.4.2 Randomizing executable load addresses 32
3.4.3 Randomized stack locations . 33
3.4.4 Randomization of memory mappings 34
3.4.5 Randomizing the addresses of the heap chunks / the BRK boundary 34
3.4.6 VDSO randomization . 34
3.4.7 Kernel address-space layout randomization 35
3.4.8 ELF layout randomization . 35
3.4.9 Further opportunities to apply ASLR to Genode 36

3.5 Fortify source . 37
3.6 MMU mechanisms . 38

3.6.1 Data Execution Prevention (DEP) 38
3.6.2 Supervisor Mode Access/Execution Protection (SMAP and SMEP) 39
3.6.3 0-address protection . 40

3.7 Seccomp . 41
3.8 POSIX capabilities . 41
3.9 Mandatory Access Control (MAC) . 42
3.10 Information leakage prevention . 44

3.10.1 /proc/$pid/maps protection . 44
3.10.2 Stack leakage in the padding in API data structures 44
3.10.3 Kernel Address Display Restriction and dmesg restrictions 44

3.11 Diminishing the attack surface . 45
3.11.1 Hardlink restrictions . 45
3.11.2 ptrace scope . 45
3.11.3 /dev/mem protection . 45
3.11.4 Disabling /dev/kmem . 46
3.11.5 Block module loading and kexec 46
3.11.6 Blacklisting of rare protocols . 46

3.12 Further mitigation mechanisms on non-Linux OSes 46
3.12.1 Pledges (OpenBSD) . 46
3.12.2 Host-based intrusion detection (HIDS) 47
3.12.3 Microsoft EMET defense against ROP attacks 47

4 Review of recent CVEs 49
4.1 Typical kinds of vulnerabilities . 49

4.1.1 Double-fetch issues . 49
4.1.2 Kernel-information leaks via parameter structures 49
4.1.3 Dereferenced null pointers or dangling pointers 49

4.2 Xen hypervisor . 50
4.3 Linux kernel . 53

2

Contents

4.3.1 Bugs in device drivers . 53
4.3.2 Logical errors and bugs in protocol stacks (networking, file sys-

tems, audio) . 58
4.3.3 Bugs in the low-level parts of the kernel 62
4.3.4 Vulnerabilities in security-related functions 66

4.4 Lessons learned from the reviewed CVEs 68

5 Improving the resilience of Genode 70
5.1 Address known limitations / uncover unknown limitations 70
5.2 Infrastructure for random-based mitigation techniques 70
5.3 Tool-chain-based protections . 70
5.4 MMU-based protection mechanisms . 71
5.5 Mitigating cold-boot attacks . 71
5.6 Address-space randomization . 71
5.7 ELF-binary randomization . 71
5.8 Heap protection . 72
5.9 Tools for hardening the implementation 72

3

Contents

Genode is an OS technology designated for application areas where high security
and robustness are mandated. Being a component-based system, it applies strict privi-
lege separation in a holistic way to the entire software stack, from low-level OS services
like memory management, over device drivers and protocol stacks, to applications and
application plugins. It thereby addresses security in a way that is fundamentally dif-
ferent from conventional operating systems, which generally consider security as an
afterthought rather than a premise. The current state-of-the-art of securing commodity
OSes is the application of an arsenal of threat-mitigation techniques combined with the
timely installation of security fixes.

This document contrasts Genode’s approach of structural resilience with the threat-
mitigation practices employed by today’s mainstream OSes. It furthermore discusses
the costs and presumed benefits of incorporating those techniques into the Genode OS
framework.

4

1 Introduction

Producers of security equipment generally prefer static to dynamic systems because
the former are much easier to evaluate. However, users increasingly demand flexible,
scalable, and feature-rich products that are inherently dynamic. With virtualization,
there exists a middle ground where a highly complex dynamic system running in a vir-
tual machine is embedded in a static system. However, this approach does not scale
well enough. Dynamic functionalities are always exposed to the complex guest OS,
which limits the implementation of applications that are both flexible and secure. If
such applications are demanded, the use of commodity operating systems (predomi-
nately based on GNU/Linux) seems to be inevitable. In contrast to rigid static systems,
however, a realistic assessment of the security implications of using a commodity OS is
impossible. Security apparently has to be traded against flexibility.

Genode1 is an OS architecture that is designed from the ground up to align high
security with dynamic application workloads, ultimately resolving the conflict between
security and flexibility. Genode’s architecture is explained in detail in the book “Genode
Foundations”, which can be downloaded at the Genode website:

Genode OS Framework

https://genode.org

For assessing the viability of Genode for next-generation security products, experts
who are deeply familiar with commodity OS technology like Unix-based systems tend
to struggle with getting a tangible feeling for the risks and benefits of an unfamiliar
technology like Genode. Intuitively, it makes perfect sense to compare the state-of-the-
art security features as found on familiar OSes with the situation on Genode. Because
Genode’s philosophy deviates from the threat-mitigation mindset that is behind most of
the security features of commodity systems, however, if actually lacks security features
that we take for granted in modern OSes. Genode disappoints in this discipline and
may be rejected. This document addresses those concerns by discussing state-of-the-art
mitigation techniques in the context of Genode.

1.1 Motivation behind mitigation techniques

Figure 1 illustrates a fairly mundane application scenario of using an email client like
Mozilla Thunderbird on a GNU/Linux system. The Linux kernel is a highly complex
program that contains all device drivers (e. g., network card, graphics, disk, USB) and
protocol stacks (e. g., TCP/IP, various file systems) that are needed to accommodate
feature-rich applications on top. Whereas the kernel is concerned with “low-level” de-
tails, the email client is concerned with “application-level” features. Besides providing
user-facing functionality, the application contains highly complex protocol implemen-
tations:

1When talking about Genode within this document, we refer to Genode used with a microkernel like
NOVA, seL4, or Genode’s custom base-hw kernel. Genode also happens to run on the Linux kernel
but the argumentation given herein does not apply to this version.

5

https://genode.org

1.1 Motivation behind mitigation techniques

Email client

HTTP
JavaScript

Widget set

Data-format parsing
IMAP/SMTPTLS

Crypto

DatabaseNetwork

Linux Kernel

File systemTCP/IP

User ACC

ACPI

Ethernet SATALogging

Figure 1: A feature-rich application running on GNU/Linux.

• It speaks protocols like IMAP and SMTP for talking to email servers. The net-
work communication is performed via a socket interface provided by the kernel’s
TCP/IP stack.

• It takes care about transport-level security (TLS), e. g., based on OpenSSL. This,
in turn, involves the execution of cryptographic functions.

• It manages email-account settings including the local storage of the login creden-
tials needed to access the user’s account on the email server.

• It interprets the email format, including the handling of attachments.

• It displays emails of various formats and encodings. In fact, to show HTML
emails, it contains a web rendering engine that includes the ability to execute
Javascript code.

• To show images contained in an email, it decodes various image formats like
JPEG, PNG, GIF, etc.

• It manages all emails that are stored in local folders by accessing the file sys-
tem provided by the kernel. This includes full-text indexing of the content of all
emails.

6

1.1 Motivation behind mitigation techniques

• It provides a sophisticated user interface for navigating, viewing, and composing
emails.

• If using GPG (via the Enigmail plugin), it requests the passphrase for the user’s
private keys.

• It interacts with the desktop environment to support copy-and-paste and drag-
and-drop.

• To allow the user to add attachments to emails, it is able to access all of the user’s
files.

What could go wrong? The answer must consider two aspects: The likelihood for an
attack (or bug), and the potential damage.

The likelihood for an attack depends on the attack surface of the application. Both
the kernel and the email client are outward-facing and - with a code size in the order
of millions of lines - hugely complex. Outward-facing means that a potential attacker
is able to directly interact with them. For example, an attacker may

• Send manipulated network packets to the machine to make the kernel stumble,

• Insert a manipulated USB stick into the machine triggering a kernel bug while
parsing file-system structures,

• Send an email with a manipulated JPEG image that triggers a buffer overflow in
the email client,

• Manipulate the email client from another compromised program (web browser,
PDF viewer) via ptrace, the X protocol, or desktop-integration protocols.

Because of the high complexity, vulnerabilities are abound. Because of the outward-
facing nature of both programs, those vulnerabilities are exposed to attackers.

The consequences of an attack - if launched successfully - are so far-reaching that
an assessment becomes impossible. An attacker that compromised the email client has
gained the authority to:

• Access all of the user’s emails and data stored on disk. This data can be sent over
the network,

• Store files on disk, e. g., installing a permanent backdoor as an automatically
started program of the user’s desktop session,

• Install key loggers or take screenshots,

• Further escalate its privileges by attacking the machine’s kernel or other machines
from the compromised user application,

• Exploit computing resources like CPU time (crypto-currency mining) or network
bandwidth (spam botnets).

7

1.2 Compartments and structural resilience

In the light of this given architecture, the application of state-of-the-art threat-mitigation
measures is indispensable. There is no doubt that features like address-space random-
ization, data-execution prevention, or stack-overflow protection help to hamper the
outcome of attacks.

Still, most state-of-the-art mitigation techniques address symptoms instead of the
root cause of the problem, which is the missing separation of duties (and privileges) in
today’s software stacks. Mitigation techniques are crafted with the same line of think-
ing as Kevin in the movie “Kevin home alone”. He knows that the burglars are able
to enter his house. There are too many vulnerabilities like unsecured windows, rusty
locks, or weak cellar doors. To defend the house, Kevin spills marbles on the floor,
installs trip wires, and constructs all kinds of funny traps within the house.

1.2 Compartments and structural resilience

Genode addresses security from a different angle. Instead of relying on trip wires and
traps, and following “best practices” like putting cash at random places instead of the
kitchen table, Genode focuses on

• Structural integrity of the building,

• Strong walls between rooms within the building,

• Minimizing of outside-facing doors and windows that may be misused to illegit-
imately enter the building (attack surface from the outside),

• Locked doors between rooms that cannot be circumvented without authorization,

• Storing treasures in vaults.

In Genode, the main purpose of the kernel is the creation of isolated compartments and
the provisioning of controlled and explicitly authorized interactions between compart-
ments. The less complex the kernel, the smaller is the chance of cracks in the walls
between the compartments. With a microkernel of less than 15K lines of code, there is
a realistic chance that the kernel is completely free from vulnerabilities. This claim is
supported by the existence of seL4, which is a microkernel that is formally proven to
have no bugs. The Genode framework on top of the kernel extends the microkernel-
construction principles to the user level. E.g., the structural resilience of Genode is
reinforced by the following considerations:

• The microkernel is not extensible by loadable kernel modules.

• The microkernel interface (that is exposed to all user-level components) is ex-
tremely rigid. E.g., the microkernel never touches any user memory and never
interprets user-space-provided pointers. The user land can reference microkernel
objects solely via “capabilities”.

8

1.2 Compartments and structural resilience

Inbox
RAM FS

Outbox
RAM FS

Contacts
FS

GPG Local folders FS

User data
Crypto FS

IMAP
TCP/IP

TLS

SMTP
TCP/IP

TLS

NIC router

NIC driver

File system

System binaries

Block driver

Controller

Email composer Email view
Dialog
Widget set

Email folder view

Dialog
Widget set

Dialog
Widget set

Dialog
Widget set

Image decoder

Figure 2: An email client as a multi-component application on Genode

• Code that is relied on by critical components is as low complex as possible, both
in terms of the amount of code and the simplicity of data structures. This equally
applies to the microkernel and critical user-level components.

• Even though Genode components are written in C++, they do not depend of a
C runtime or C++ standard library. Hence, they do not inherit the questionable
security legacies of POSIX such as format strings. The Genode API leverages the
C++ type system to eliminate several classes of programming bugs at compile
time.

• Components follow a functional programming style that largely avoids the re-
liance on side effects like global variables or anonymous memory allocations.

• There is no over-provisioning of physical resources. The consumption of physical
memory is always accounted to user-level components.

Given the Genode architecture, systems and applications can be designed with the
inherent assumption that complex code will fail. Complex code can still be leveraged
as long as it is not responsible to uphold fundamental security properties. Figure [?]
illustrates a canonical example of a Genode-based multi-component application.

• Instead of using a global file system, different parts of the application have com-
pletely different views. E.g., the inbox resides in a dedicated file system instance

9

1.2 Compartments and structural resilience

that is completely decoupled from the backing store used for the local-folders
database. Most components do not see any files at all.

• Each component has a dedicated and narrow purpose. E.g., the IMAP component
fetches emails from a server to populate the inbox file system. It has no access to
the local email folders.

• No component has access to both the network and persistent storage.

• Data that originates from an untrusted source (like a JPEG image contained in an
email) is decoded in short-living sandboxes. The decoder is presented with the
raw JPEG data and a way to report the resulting pixels but lives in an otherwise
empty environment.

• TLS is realized by a bump-in-the-wire component. This eliminates the risk that
the IMAP component accidentally sends unencrypted information to the outside
world.

• The highly complex GUI widget rendering is decoupled from the low-complexity
application logic.

• Different parts of the application (IMAP and SMTP) use dedicated TCP/IP stacks.
Hence, the TCP/IP protocol implementation is not a single point of failure or
prone to unintended information flows.

• Importing an email from the inbox to the local-folders database follows a formal
procedure that can be triggered by the user only.

• The browser of the local folders has read-only access to the local-folders database.

• The central controller component that defines the interplay and information flow
between the user-facing, the network-facing, and the storage-related components
is relieved from the complexities of protocol handling, user-interface rendering,
and file-format decoding. It can thereby be implemented at a very low complexity.

In contrast to the original monolithic design, the multi-component design allows for a
realistic risk assessment. For any complex component, one may ask: What would hap-
pen in the event the component is compromised? For example, the outward-facing and
complex IMAP component may be prone to attacks. But even in the worst case - being
completely in the hands of the attacker - it cannot be exploited to leak any emails from
the local folders. Because it has no access to any persistent storage where executable
programs reside, it cannot permanently manifest itself in the system. Because IMAP is
unrelated to the GUI, the attacker would not be able to log keys or take screenshots.

10

1.3 Pros and cons

1.3 Pros and cons

Given the multi-component email scenario, it becomes clear that the provisioning of
state-of-the-art mitigation techniques would not bring a substantial improvement be-
cause the complex code that would presumably be protected by the mitigation tech-
niques is expected to fail anyway. That said, there are two very good arguments to
equip Genode with state-of-the-art mitigation techniques nevertheless:

Real-world applications look different It is not realistic to redesign all software as
multi-component applications. In fact, the scenario depicted in Figure 2 actually
does not exist (yet).

Current-generation monolithic applications must be accommodated by Genode.
For example, the TOR component as added by Genode 16.08 has the form of a
single monolithic component that contains a staggering amount of 400K lines of
code. It goes without saying that this complexity makes the component highly
vulnerable. Since it communicates over the network it is directly exposed to po-
tential attackers. Because it is unrealistic to redesign the component as a multi-
component subsystem in the short term, Genode’s structural resilience is unable
to protect the critical security functions of the TOR component. Applying state-
of-the-art mitigation techniques would be the best we can do.

Multiple lines of defense Even though we are confident in the implementation of the
microkernel and Genode’s base system, we know that bugs remain. Even if the
entire code underwent formal verification, there is still the chance for hardware
bugs. Uncertainties remain. Mitigation techniques would come into effect as a
remedy in such situations.

Wouldn’t it be reasonable to apply all state-of-the-art mitigation techniques to Genode
then? Yes, but we have to consider that the addition of “security features” bears the risk
of weakening Genode’s structural resilience by making the foundation of the system
more complex and less deterministic. Therefore an even-handed selection of techniques
is desired.

1.4 Document structure

The remainder of the document is structured as follows. The landscape of threats and
mitigations is extremely confusing and full of jargon. Section 2 tries to frame the dis-
cussion by classifying the different kinds of attacks. Section 3 reviews the mitigation
techniques employed in today’s modern operating systems and discuss how they re-
late to Genode. Section 4 takes a look at recently disclosed vulnerabilities of the Xen
hypervisor and the Linux kernel. The section is meant to create a tangible feeling for
the most pressing problems, motivating specific mitigation measures. Section 5 closes
the document with a rough plan for improving Genode in the future.

11

2 Taxonomy of attacks

There exists a huge arsenal of threat mitigation techniques. Before we review the di-
verse approaches in Section 3, this section examines the threats in a systematic way.
We differentiate the attacks into the categories/phases denial of service (Section 2.1),
information gathering (Section 2.2), privilege escalation (Section 2.3), and exploitation
(Section 2.4). Boot attacks are not covered.

2.1 Denial of service

A denial-of-service attack is the lowest hanging fruit for attackers. In fact, most vul-
nerabilities (as the ones studied in Section 4) bear the potential to halt the system via
a kernel crash due to memory-safety issues, a failed assertion, a deadlock, division by
zero, or similar bugs. Other forms of denial-of-service attacks drain the physical re-
sources of the system to a point where it becomes unusable. E.g., a memory leak in the
kernel may consume all physical memory, triggering the kernel out-of-memory (OOM)
handling, a bug in a device driver may result in the generation of interrupts at a high
rate (interrupt storm) keeping the kernel busy, or a computation-intensive kernel oper-
ation (like a cryptographic function) parameterized by an attacker may dominate the
overall system performance.

The opportunities for such attacks are so manifold that resistance against denial-of-
service problems is universally regarded as impossible on current-generation general-
purpose OSes.

Genode is ultimately designed to withstand such problems. Thanks to its component-
based architecture, resource leaks or crashes are constrained by component boundaries.
In principle, a malfunctioning component can be restarted. In contrast to traditional
OSes, Genode accounts the use of physical resources to components and provides
means to trade those resources between components. There is no over-provisioning of
resources that would put pressure on the OS kernel. That said, the current implemen-
tation is incomplete in this respect.

Known resource-exhaustion issues There are a few known resource-exhaustion
denial-of-service attack vectors in Genode. In particular, capabilities are a system-
global limited resource because a capability is a kernel object. The limit stems from
the microkernel design or the dimensioning of the capability namespace of Genode’s
core component. Consequently, the allocation of capabilities should be regimented sim-
ilarly to physical memory allocations. In contrast to physical memory where Genode
employs its resource-trading scheme, this scheme remains unused for allocating capa-
bilities. Another instance of the risk for resource exhaustion is the kernel memory of
the NOVA kernel, which has a static limit. Genode’s custom base-hw does not have
this limitation.

Constraints of restarting components The ability to restart components is cur-
rently limited to components that do not provide a service to other components because

12

2.2 Information gathering

a disappearing server would affect clients that depend on it. Because of this constraint,
restartable components must either modelled as RPC clients or interposed by a failsafe-
guarding wrapper component. E.g., To make a network driver restartable there are two
approaches:

• The bug-prone network driver can be executed as a child component of a ro-
bust NIC failsafe component. This idea is discussed at https://github.com/
genodelabs/genode/issues/1592.

• Alternatively, network drivers could be designed as clients of a trusted (and non-
restartable) NIC router instead of a NIC service as is the case today.

As of today none of these two options are realized.

2.2 Information gathering

As described very well by the following article, attacks are often pursued in multiple
stages.

Bypassing PaX ASLR protection

http://phrack.org/issues/59/9.html

In a first stage, the attacker learns about the attacked system. For example, in order to
circumvent address-space randomization, the attacker tries to get hold of the virtual-
memory layout of the attacked program. Only after enough information is gathered,
the attacker launches the next stage of the attack, e. g., via a chained return-oriented
program (ROP) (Section 2.3). Consequently the first line of defense against privilege-
escalation attacks is preventing the attacker to gather information. Typical attack vec-
tors for the information-gathering phase are format-string attacks, kernel-information
leakage (if the attacker is local), and error handling.

Besides leveraging information leaks to aid privilege-escalation attacks, an attacker
may solely be after the information processed on the system. Cold boot attacks presume
an attacker model where the attacker is able to gain access over the entire physical
memory content in order to steal information

2.2.1 Format-string attacks

Format-string attacks can be launched against programs that can be tricked to process
input supplied by the attacker as a format string, for example, if a part of the attacker-
controlled input is printed via printf.

char const *id = get_request_id(...);
...
printf(id);

13

https://github.com/genodelabs/genode/issues/1592
https://github.com/genodelabs/genode/issues/1592
http://phrack.org/issues/59/9.html

2.2 Information gathering

The program may expect id to be a number. But since id is controlled by the attacker,
it could contain a string like "%x %x %x %x”, which is a format string that outputs four
hexadecimal numbers. The printf function is called without any further arguments.
By parsing the format string, it expects four arguments on the stack. However, the
stack positions where those arguments are expected actually belong to a different stack
frame (because the caller of printf has pushed only one instead of four arguments to
the stack). Consequently, the attacker tricks the program to print a backtrace, which
includes interesting return addresses. If enough stack content is gathered, the attacker
becomes able to determine the virtual addresses of known-to-be used library symbols
such as the libc startup code. This information, in turn, is extremely valuable to craft an
ROP attack. The correct way to make the program resilient against this attack is calling
printf via a fixed format string:

printf("%s", id);

But because this requires awareness and discipline of each programmer, format-string
vulnerabilities easily slip into programs.

Genode originally relied on the use of format strings. However with the introduction
of the current text-output API, the former use cases of format strings are now covered
by a type-safe C++ API so that format strings will eventually be removed from the
Genode API. This way, native Genode components are immune against this form of
information leakage. Still, higher-level components, in particular third-party software
that relies on a C library remains vulnerable.

Work of removing format strings from the entire Genode code base is under way.

2.2.2 Information-leaking error messages

Error messages are often crafted with the intention to assist the developer with analysing
the situation. The more information the developer gets about the circumstances of error
conditions, the better. Unfortunately, to an attacker that can deliberately trigger error
conditions, diagnostic messages are a welcome leak of program-internal or system-
internal information. Examples of this problem exist on all levels of the software stack.
For example, the Linux kernel prints a backtrace to the kernel log when a kernel thread
crashes. The backtrace contains virtual addresses of kernel symbols. So if an attacker
is able to trigger a kernel bug and observe the kernel log, this information can be ex-
ploited for a local privilege escalation. Another example is a web server that forwards
the error messages from a database to the browser. The errors may be deliberately trig-
gered by an attacker that issues malformed queries and reveal implementation details
of the web server and the database.

2.2.3 Leaky parameter structures

The most prominent reason for the leak of kernel-internal information to the user space
are incompletely initialized parameter structures passed between the kernel and the

14

2.2 Information gathering

user space, in particular when the user land interacts with the kernel via ioctl opera-
tions.

Structure holes and information leaks

https://lwn.net/Articles/417989/

In a situation where an ioctl operation returns information (e.g„ the properties of a
device), the returned information is typically assembled in the form of a struct on
the kernel stack, and then copied to the user land. If a device driver accidentally leaves
a member of the struct uninitialized, the information previously stored on the mem-
ber’s stack position won’t be overwritten. The stale information is eventually copied
to the user land. This information may contain any kind of kernel-internal information
- depending on the code that was previously executed via the kernel stack. This may
include hints about the virtual address-space layout of the kernel (useful for circum-
venting kernel ASLR) or cryptographic credentials.

Such leaks may even occur if the driver explicitly initializes each single member of
the parameter structure. In the presence of members of different sizes, the compiler
may insert padding between the members to meet alignment constraints of the indi-
vidual members. E.g., the following structure on a x86_64 machine will have a gap of
6 bytes between the 2-byte device_id member and the 8-byte-aligned status_bits
member.

struct status {
short device_id;
long status_bits;

};

Even when initializing both members, the gap between the members remains unini-
tialized. To avoid this situations, it is a good practice to clear the entire parameter
structure via memset. However, since this practice depends on the discipline of each
programmer, the problem persists.

Possible information leaks between Genode components Currently, Genode is
prone to the same principle information-leak problem when structured data is passed
between components, e. g., as arguments or return values of RPC calls.

For example, Genode’s Framebuffer::Session::mode RPC function returns a
POD (plain-old-data) object of type Mode. In this case, there is no padding between
members but other RPC functions may be prone to leakage.

2.2.4 Cold-boot attacks

Instead of targeting an attack on the software running on a machine, an attacker may
gain access to the machine’s physical memory by a mechanism below the operating
system. For example:

15

https://lwn.net/Articles/417989/

2.2 Information gathering

• An attacker with physical access to the machine may reset the machine, boot a
minimal-complexity custom-made OS from a USB stick, which reads the physical
memory content.

• A compromised base-band processor of a mobile-phone chip set may access the
entirety of the application-processors physical memory.

• The firmware running on the Intel management engine (ME) co-processor may
access the physical memory bus directly without being subjected to an IOMMU.

• A bus-level attack may origin from a custom device inserted into a laptop’s PC-
card slot. Such a device would be able to issue DMA transactions, accessing the
physical memory unless an IOMMU prevents such accesses.

Given such a strong attacker model, the best software running on the machine can do to
mitigate such attacks is leaving as little plain-text information in memory as possible.
Authors of crypto libraries and certain security-sensitive applications pay attention to
these attacker models by zeroing cryptographic material when no longer in use. How-
ever, commodity OSes don’t attempt to mitigate such attacks on the operating system
level.

Diminishing cold-boot attacks on Genode Currently, Genode does not consider
cold-boot attacks. However, the following two improvements would greatly relieve
the situation:

• Genode maintains the invariant that freshly allocated RAM dataspaces are zero-
initialized. Today, dataspaces are cleared at the time of their allocation. However,
after freeing a dataspace, the underlying physical memory retains stale informa-
tion until it is allocated for a new dataspace. To anticipate the cold-boot attacker
model, dataspaces could instead be cleared when freed.

As a prerequisite to implement this idea, all physical memory must be cleared at
boot time. Otherwise a dataspace allocated directly after booting would remain
uncleared. Depending on the amount of memory installed in the machine, clear-
ing the entire memory, however, delays the boot by several seconds. This problem
could be solved by a change of Genode’s way of clearing memory. In the current
implementation, Genode’s core component clears dataspaces “in band” with the
dataspace allocation. Alternatively, a low-priority thread could perform memory
purging out of band and maintain a second allocator structure that distinguishes
dirty physical memory from cleared physical memory. Dataspace would exclu-
sively be allocated from the clean physical memory pool. When freed, the backing
store is handed over to the dirty memory pool. A dedicated thread would succes-
sively move memory from the dirty memory pool to the clean memory pool while
erasing the memory. The thread would usually run at the lowest priority. If the
clean memory pool comes under pressure by a dataspace allocation, the thread’s

16

2.3 Privilege escalation

priority could be boosted to the one of the client that issued the dataspace alloca-
tion.

• Currently, Genode’s heap does not clear memory blocks, which is consistent with
the behavior of traditional heaps. However, in line with the dataspace handling
described above, the heap could erase memory blocks upon release. When the
heap allocates its backing store in the form of RAM dataspaces, the backing store
is known to be clean. When freeing a block, the heap would zero the memory
unless it is explicitly configured to skip the clearing phase, e. g., for performance
reasons.

For Genode’s slab allocators, this line of argument does not apply because slabs
are always used as a performance optimization. So the clearing is never antici-
pated.

2.3 Privilege escalation

Most attacks are motivated by the goal to expand the attacker’s privileges in one form
or another.

• Access information that normally not available to the attacker, e. g., login creden-
tials, documents, blackmail material, cryptographic keys,

• Control a system that is normally beyond the attacker’s control, e. g., sabotaging
machinery,

• Use foreign computing resources, e. g., CPU time for crypto-currency mining or
network bandwidth for spamming or launching distributed denial-of-service at-
tacks.

We distinguish two different privilege escalation attempts.

Leveraging ambient authority

An attacker wants to enter a locked building but does not posses the key. How-
ever, he knows someone who has legitimate access to the building. So the attacker
tricks this person to unlock the door for him. The attacker does not need steal the
key. The tricked person is not harmed. But the attacker nevertheless manages to
illegitimately enter the building.

In commodity operating systems, the tricked persons are system daemons that
offer services to unprivileged users but that need special privileges to fulfill those
services. For example, a user has no direct access to talk to the printer. In order
to print a document, the user asks the printer daemon to talk to the printer on
the user’s behalf. The printer daemon has the privileges required to talk to the
printer. But these privileges also enable the daemon to do many other things
that an unprivileged user could not do. By supplying creative parameters to the
daemon, the attacker tricks the daemon into applying its privileges in ways that
are not intended by its designated role.

17

2.3 Privilege escalation

Exploiting vulnerabilities

To enter a locked building, the attacker would try to find a weakness like an un-
secured window, a rusty lock, or an unlocked flue. To get into the building, a
window may be shattered or a lock picked. Sometimes, the whole house may
blow up in the process. The starting point of an attack is the gathering of in-
formation to identify weaknesses in the building’s structural integrity. Once a
weakness is identified, it serves as a starting point for getting into the building.
Once in the building, the attacker cannot freely move yet. In order to go forward,
the environment needs to be manipulated in some way, e. g., by switching on the
lights to look around or disarming an alarm system. For an attacker it might be
beneficial to cover the tracks. Once in the building, it becomes easy to weaken the
building’s structural integrity, e. g., by leaving a window ajar. This weakness will
greatly ease the future access to the building.

The weaknesses of the structural integrity of an operating system is called “vul-
nerability”, which is a mundane programming error such a missing bounds
check. In today’s commodity OSes and application stacks, the existence of abun-
dant vulnerabilities is a given. In most cases, a vulnerability is not directly
exploitable but merely serves as a starting point of a chain of attacks that build
upon each other. At some stage, the attacker needs to import custom code into
the attacked system that acts in the interest of the attacker. Attacks may have side
effects like crashing processes, anomalies of resource consumption, or network
traffic. To cover up those side effects, a part of the attack may be concerned with
manipulating logs or monitoring systems. For installing a permanent back door,
access to persistent storage and a way to manipulate the system’s boot procedure
are extremely valuable.

Ambient authority problems are best countered by a fine-grained separation of con-
cerns. E.g., if the printer daemon has access to the printer but no other part of system,
the damage it can cause when tricked by an attacker is limited to the printer. Manda-
tory access control frameworks like SELinux replace the notion of an almighty root user
by fine-grained policies and thereby reduce the risks. The majority of threat-mitigation
techniques discussed in this document, however, address the second category: The ex-
ploitation of vulnerabilities. To understand the various mitigation approaches and their
limitations, we first discuss how such attacks work in principle.

2.3.1 Seizing control over a foreign program

At this stage, the immediate goal of the attacker is to cause the attacked program to
leave its regular path of execution. This change of behavior is induced by supplying
attacker-controlled input to the program that triggers a vulnerability. Typical vulnera-
bilities are:

Integer-overflow Certain input arguments (like the day of the month) are expected to
intuitively lie in a range of values. The programmer does not expect an input

18

2.3 Privilege escalation

value that is deliberately chosen by the attacker to lie at nearby the limit of an
integer type. An innocent looking conditional branch may reach a wrong conclu-
sion.

if (day_of_month + days_per_week > days_of_this_month) {...
// day is in the last week of the month

}

In this example, if the attacker supplied the value INT_MAX as day_of_month
argument, the addition would trigger an integer overflow resulting in a low value
(6), which satisfies the condition. If the subsequent code further uses the value of
day_of_month (e. g., for dimensioning a buffer, or copying data), the program
is vulnerable.

Missing bounds checks Low-level languages like C and C++ perform no bounds
checks when accessing array elements. The responsibility lies with the program-
mer and is easy to miss. Classical examples are POSIX functions like strcpy,
which do not even take an upper bound as argument. As another typical exam-
ple, the interplay of unsigned and signed integer values is bug-prone:

if (i < upper_bound) ...

If i is a signed integer that originates from the attacker, the attacker may supply
the value 0xffffffff (on 32-bit platforms). The check will then effectively compare
upper_bound against -1 and wrongly accept the condition.

Double fetch A program repeatedly obtains its parameters from an attacker-controlled
buffer. The program expects that the buffer’s content remains constant whereby
the attacker deliberately changes the buffer values. E.g., if the program first
performs a successful bounds check and then reads the value later on, the at-
tacker may have replaced the checked value with a value that lies out of bounds,
eventually causing a buffer-write operation outside the buffer boundaries. This
specific problem is commonly referred to as “time-of-check-time-of-use” but the
underlying double-fetch bugs can occur in various other forms.

Use after free A dynamically allocated memory block is freed but there still exist stale
(dangling) pointers that refer to the former content of the memory block. If the at-
tacker manages to trigger an allocation of a new block that uses the same backing
store as the freed block, and to supply the content of the freshly allocated block,
the dangling pointer will refer to attacker-controlled memory content. If the at-
tacker is able to trick the attacked program into de-referencing such a pointer, the
attacked program will operate on attacker-controlled data structures.

19

2.3 Privilege escalation

Refcount overflows If the attacked program uses reference counters to track the life-
time of objects and the attacker finds a way to increment the number of refer-
ences (e. g., by repeatedly opening the same file without closing it), the refer-
ence counter may overflow to the value of zero. This may trigger an unintended
destruction of the underlying object (producing dangling pointers), or the unin-
tended double-allocation of the object’s backing store (if the ref counter is used
for the allocation of objects).

Section 4.1 reviews the most prominent vulnerabilities in more detail. An attacker uses
any of those vulnerabilities to manipulate the internal state of the program, more specif-
ically pointer values that are de-referenced during the subsequent execution of the pro-
gram. Eventually, the attacker needs to manipulate jump targets to steer the control
flow of the program away from its regular path. Jump targets are values in the pro-
gram’s memory that end up being loaded into the instruction-pointer register of the
CPU. The following techniques are common for manipulating jump targets:

Return addresses (stack smashing) Each time a function is called, the caller’s instruc-
tion pointer (“return address”) is written to the program’s stack. E.g., on x86, the
saving of the return address is implicitly done by the call instruction. Once the
function returns, the ret instruction conversely loads the instruction pointer with
the return address as fetched from the stack. If the attacker manages to manipu-
late the stack position where the return address of the currently called function is
stored, the ret instruction will load the instruction pointer with the value sup-
plied by the attacher.

Local pointer overwrites If the attacked program stores a function pointer adjacent
to a buffer that is prone to an overflow, the overflowing buffer may overwrite the
pointer value. Later, when the pointer gets de-referenced the program resumes
execution at an attacker-controlled instruction pointer. Note that function point-
ers may have the form of C++ vtables, e. g., if both an overflowing buffer and a
C++ object with virtual functions appear as local function variables, the function
may be vulnerable.

Heap overflows If a buffer that is stored on a dynamically allocated memory block is
prone to overflow, memory adjacent to the memory block can be corrupted. This
memory may contain pointers to the heap’s meta data, which are eventually de-
referenced by the heap (i. e., when freeing a block). Therefore, an attacker who
can predict the locations of allocated memory blocks can deliberately manipulate
the heap’s metadata, tricking the heap into calling an attacker-provided function
pointer.

Data-pointer write operations It is not always needed to overwrite a function pointer.
Plain data pointers that are de-referenced for writing are almost as valuable for an
attacker with a-priory knowledge of the program’s virtual memory layout. E.g.,
one technique to attack Windows OS is to direct data writes into an in-kernel lo-
cation where page tables are kept. So an attacker could modify page-table entries

20

2.3 Privilege escalation

directly (bypassing SMAP/SMEP). Another application of data-write operations
are PLT pointer manipulations described next.

PLT pointer manipulation The procedure linkage table (PLT) is an array of function
pointers that is present in each dynamically linked binary or shared object (ELF
object). For each external library function called by the respective ELF object,
the table holds a pointer to the corresponding function. The table is not static
but filled by the dynamic linker on demand. When loading an ELF object, the
dynamic linker initializes each PLT entry with a pointer to so-called jump-slot-
relocation function provided by itself. When the ELF object calls a function the
first time, it jumps through the PLT entry to the linker’s jump-slot-relocation func-
tion. This function looks up the pointer to the actually to-be-called function in the
loaded ELF objects, registers the function pointer in the corresponding PLT en-
try, and calls the function. All subsequent calls to the library function will jump
through the PLT entry directly to the corresponding library function. Thanks to
this “lazy bind” mechanism, the loading of shared objects - even very large ones -
requires very little up-front setup costs. The fact that PLT entries are jump targets
that lie within legitimately writable memory (because the dynamic linker has to
modify them) at a predictable virtual base address (in contrast to stack locations
or heap allocations) makes them an valuable target for an attacker that can trick
the attacked program to perform an arbitrary write operation.

2.3.2 “Shellcode” injection

Now that the attacker has managed to make the foreign program stumble, it is time to
fill the program’s dead hull with new life. Otherwise the effort would remain a denial-
of-service rather than a valuable privilege-escalation attack. The attacker needs to im-
port custom-crafted executable code into the attacked program, which is then executed
in place and equipped with the privileges of the original program.

The classical method to inject attacker-provided code (“shellcode”) is to supply the
program along with the content of an overflowing buffer. After the buffer overflow, the
attacker’s code will ultimately end up somewhere in the program’s stack or heap area.
When padding the area with enough nop instructions and with a halfway predictable
stack and heap layout, there is a good chance for the attacker to overwrite a jump target
with a value that points to the attacker’s code.

However, with the introduction of non-executable memory mappings (as emu-
lated by PaX or featured by current-generation CPUs) commonly referred to as data-
execution prevention (DEP), heap and stack memory are no longer executable, which
led to the advent of the so-called return-oriented programming (ROP) technique de-
scribed in the next section.

In practice, the implementation of DEP is not all-encompassing. I.e., on account of
backwards compatibility, the Windows kernel maintains an internal pool of executable
memory. An attacker may leverage the fact that legacy drivers allocate kernel objects
from this pool. If the attacker is able to define the memory content of such a kernel

21

2.3 Privilege escalation

object (e. g., a GDI color palette), it is possible to misuse the kernel object as a carrier of
to-be-injected code. A further discussion of this topic can be found in Section 3.6.2.

2.3.3 Return-oriented programming (ROP)

Because of DEP, “shellcode” can no longer be injected into the attacked program. In-
stead of injecting new code into the attacked program, a ROP attack executes snippets
of code that are already present in the program’s address space, e. g., in the form of the
executable binary or shared libraries.

In general, the attack presumes that the attacker has access to executable binaries of
the program and the loaded shared libraries. This is realistic in scenarios where those
programs are installed from binary packages as on most GNU/Linux distributions or
proprietary software. The attacker scans the binaries for so-called “gadgets” - little
snippets of a few instructions that are followed by a ret instruction. What the CPU
instruction set is for a regular assembly programmer, the set of gadgets is for the ROP
programmer.

A ROP-based shellcode is started by manipulating a jump target to point to a gadget,
e. g., via one of the methods described in Section 2.3.1. Once the gadget returns (that is,
the CPU executes the ret instruction), the CPU loads the next instruction pointer from
the stack (which is normally the origin of a function call). By identifying gadgets that
manipulate the stack pointer, the attacker is able precisely steer the execution towards
different positions on the stack where pointers to further gadgets are placed. This way
it is possible to execute gadgets in a row - a so-called chained ROP attack. Attackers
may employ sophisticated tooling that craft chained return-oriented programs. Similar
to how a regular compiler creates sequences of CPU instructions, such tools create ROP
chains.

An excellent explanation of return-to-PLT exploits is given by the following article:

The advanced return-into-lib(c) exploits - PaX case study

http://phrack.org/issues/58/4.html

2.3.4 Stack Pivoting

Because ROP chains are essentially a batch of return addresses on the stack, the size of
ROP programs is naturally bounded by the stack size. A common technique to over-
come this limitation is the so-called stack pivoting, which is described in the following
article:

Emerging ‘Stack Pivoting’ Exploits Bypass Common Security

https://blogs.mcafee.com/mcafee-labs/emerging-stack-pivoting-exploits-bypass-common-security/

The attacker uses ROP to change the stack pointer to an attacker-controlled buffer. A
possible gadget to achieve the stack pointer modification may look like (example taken
from the blog entry above):

22

http://phrack.org/issues/58/4.html
https://blogs.mcafee.com/mcafee-labs/emerging-stack-pivoting-exploits-bypass-common-security/

2.4 Exploitation

push eax
pop esp
pop ecx
movzx eax, ax
retn

The prepared stack starts a sequence of more ROP gadgets. This way, extremely
complex ROP attacks can be launched.

Windows 8 introduced additional assertions regarding the stack pointer into sensi-
tive functions to counter stack-pivoting attacks, i. e., those functions that manipulate
the virtual address-space layout. Unfortunately, those checks can be circumvented as
described in the following article:

Defeating Windows 8 ROP Mitigation

http://vulnfactory.org/blog/2011/09/21/defeating-windows-8-rop-mitigation/

2.4 Exploitation

Once the attacker managed to hijack a foreign program, the attacker’s code gains the
authority of the subverted program. In the case the target is the kernel, the attacker
gains ultimate authority over the entire system. But even if the attacker merely gains
the authority of a plain user program, the opportunities for exploitation are abound.
For the actual exploitation phase, the attacker does no longer need to jump through
hoops like ROP. Instead, easy-to-develop “payload” can be smuggled into the attacked
machine, which is then free to leverage the comfort of regular APIs.

Potential motives of such a “payload” are:

Persistent installation of malware This is straight-forward if any regular user pro-
gram can store data persistently and install autostart entries in the user’s desktop
environment.

Hooking into the interesting parts of the system The payload may hook into any
part of the system like a regular user. E.g., for executing a key logger, taking
screenshots, browse the user’s data stored in disk, capture audio.

Establishing a control channel to the attacker A control-channel allows the at-
tacker to remotely control the machine, update the malware, or use the local
malware as a base camp for launching further attacks like a local privilege esca-
lation to gain root privileges, or to explore other machines connected via local
network.

Covering the tracks It is the interest of the attacker to remain undetected. Hence, the
attacker may try to clear system logs from any suspicious content, or circumvent
AV scanning.

23

http://vulnfactory.org/blog/2011/09/21/defeating-windows-8-rop-mitigation/

2.4 Exploitation

Note that current-generation commodity OSes are almost defenseless against the actual
exploitation stage. In order to accommodate feature-rich user applications, regular user
programs are able to persistently store data, communicate over the network, or interact
with the user interface. Whereas the popular threat mitigation techniques are primarily
concerned with preventing privilege-escalation attacks, the reach of malware payload -
once installed - remains almost without bounds.

Note that the situation looks much different on Genode where the principle of least
authority is rigorously applied not only to OS-level services but to user applications.
E.g., when opening a PDF document, the PDF viewer can read the PDF data and has a
facility to send the pixel data of the rendered document, but it can not store any data nor
can it access the network. If a malicious PDF file corrupts the PDF viewer, the attacker
would not be able to execute any of the payload functions mentioned above. Instead,
the attacker’s shellcode finds itself in an environment where no communication with
the outside world is possible, with no “system” library function, no execve system
call, no way to spawn a shell, and not even the notion of a root user.

24

3 Mitigation techniques

This section discusses threat-mitigation techniques commonly used on GNU/Linux
systems. A very good starting point is the compilation of the security features present
in Ubuntu Linux.

Security features of Ubuntu Linux

https://wiki.ubuntu.com/Security/Features

In the following sections, we present each technique, discuss how the approach relates
to Genode, and - if applicable and beneficial - outline ways of incorporating it into
Genode.

3.1 Stack-smashing protection

Stack-smashing protection (SSP) is a compiler-based mitigation feature for detecting
buffer overflows that overwrite return addresses on the stack. The basic idea behind
SSP is to place a so-called canary value adjacent to each return address stored on the
stack. The canary value is an arbitrary value chosen at program start. Because this
canary changes each time the program is executed, an attacker cannot easily predict its
value. Each time a function is called, the canary value is placed on the stack frame. On
function return, the value present on the stack frame is compared to the canary value.
The ret instruction is executed only if the values are equal. Otherwise, the program
aborts. In the event that a buffer overflow occurred in the function body, the canary
value is overwritten by the overflowing buffer content before the overflow reaches the
return address.

Originally, this idea was implemented by the StackGuard and ProPolicy features of
GCC on the x86 architecture. The development culminated in the -fstack-protector
and -fstack-protector-all flags introduced in 2005. In 2012, Google introduced
-fstack-protector-strong to improve the balance of performance and security.
This variant is available since GCC 4.9 and used on Android by default. (Genode’s
tool-chain is currently based on 4.9.2)

The following article provides a well-written explanation of stack smashing, stack
canaries, and GOT/PLT exploitation:

Stack Smashing On A Modern Linux System (2012)

https://www.exploit-db.com/papers/24085/

Another good compilation of practical tool-chain hardening measures is provided by
Gentoo’s Hardening project:

Introduction to the Gentoo Hardened toolchain

https://wiki.gentoo.org/wiki/Project:Hardened/Toolchain

25

https://wiki.ubuntu.com/Security/Features
https://www.exploit-db.com/papers/24085/
https://wiki.gentoo.org/wiki/Project:Hardened/Toolchain

3.1 Stack-smashing protection

3.1.1 Function selection

Equipping each function with a canary check would unreasonably impede the per-
formance. For this reason, heuristics built into the compiler select the potentially
vulnerable functions where this technique is applied. The heuristics can be cho-
sen via the compiler parameters -fstack-protector-all (cover all functions),
-fstack-protector (cover functions with vulnerable objects, local arrays larger
than a certain size, or buffers allocated via alloca), and -fstack-protector-strong
(also covers functions that take addresses of local variables, use local arrays of any size,
or use register local variables).

3.1.2 Canary-value protection

If an attacker can guess the canary value of a long-running program, a buffer-overflow
attack could overwrite the canary field with the attacker-supplied canary value along
with the forged return address. The stack overflow would then remain undetected.
To limit this risk, the location of the global variable that stores the canary value can be
randomized. Furthermore, the approach of so-called random-xor canaries scramble the
canary value with contextual information local to the function. Because the canary is
not the same for different function calls, it is harder to predict.

3.1.3 Limitations

Even with -fstack-protector and DEP in place, an attacker may use a buffer overflow to
overwrite pointers within the local stack frame. When such a pointer is subsequently
de-referenced for a write operation, the attacker can steer the write operation to a de-
liberately chosen virtual address. A worthwhile target is the program’s PLT (Section
[Seizing control over a foreign program]), which contains pointers to the library func-
tions used by the ELF object. Instead of overwriting a return address on the stack, the
attacker overwrites a PLT entry such that the next time, the PLT-entry’s corresponding
function is called, the program jumps to the attacker-provided instruction pointer. This
attack relies on the attacker-known position of the (writable) PLT.

To mitigate this attack, the PLT as used by the ELF binary could be provided in a read-
only mapping whereas the dynamic linker would maintain a writable alias mapping at
a randomly chosen position.

3.1.4 Enabling SSP on Genode

The stack-guard mechanism relies on the ABI symbols. __stack_chk_guard and
__stack_chk_fail.

uintptr_t __stack_chk_guard;
__attribute__((noreturn)) void __stack_chk_fail(void)

26

3.1 Stack-smashing protection

In principle, this is very simple to implement. We just need to initialize the guard
variable with a random value. However, this initialization must not happen from
within C code that is protected by SSP because the initialization function would be
called with a different canary than the one used on return time. SPP would wrongly
detect this situation as a buffer overflow. However, fortunately Genode’s components
are initialized in two stages, which use different stacks. The first stage uses an initial
stack located in the BSS segment of the binary. This stage initializes the C++ runtime,
establishes the access to the component’s Genode environment, and sets up the stack
used by the actual application-level code. In this stage, the component could obtain a
random value from its parent and store it in a variable that is visible to the code that
switches the stack to the actual application stack. Since we start the second stage with
a fresh stack from this point on, we could safely initialize a new canary value at this
point.

Review of the code generated by the compiler Most GNU/Linux on x86 take ad-
vantage of thread-local-storage (TLS) to store the canary value. The value is loaded via
segment-relative addressing. The gs segment refers to a thread-specific memory area
(that is re-configured during the context switch to a thread). The use of a field in the
TLS area alleviates the need to store the canary value in a global variable. The following
code is generated by Ubuntu’s compiler (x86_64). It shows the epilogue of a function
equipped with SSP.

mov -0x8(%rbp),%rax
xor %fs:0x28,%rax
je ok
callq __stack_chk_fail

ok: leaveq
ret

On Genode, this approach cannot be used because most microkernels do not provide
a TLS mechanism based on gs-relative addressing. However, the Genode tool chain,
which is configured to not rely on Linux TLS, generates a simpler version based on a
global variable __stack_chk_guard (on x86_32):

mov -0xc(%ebp),%eax
xor __stack_chk_guard,%eax
je ok
call __stack_chk_fail

ok: leave
ret

On x86_64, it looks like this (apparently the canary value is accessed using IP-relative
addressing):

27

3.2 Pointer obfuscation

mov -0x8(%rbp),%rax
xor __stack_chk_guard(%rip),%rax
je ok
callq __stack_chk_fail

ok: leaveq
retq

On ARM, the code looks as follows:

ldr r3, [pc, #28] ; __stack_chk_guard_ptr
ldr r2, [fp, #-8] ; obtain stack value
ldr r3, [r3] ; obtain canary value
cmp r2, r3 ; compare canary value with stack value
beq ok
bl __stack_chk_fail

ok: sub sp, fp, #4 ; return from function
pop {fp, lr}
bx lr

__stack_chk_guard_ptr: .word __stack_chk_guard

A pointer to __stack_chk_guard is kept nearby the function to obtain it via a PC-
relative load instruction.

Consequently, this form of SSP can be enabled for Genode with little effort. The only
open question is where the random canary initialization value comes from. It would
be nice to place the __stack_chk_guard variable at a random position. This could,
in principle be achieved by an ELF-binary randomization approach as discussed in
Section 3.4.

3.2 Pointer obfuscation

As explained in Section 2.3.1, function pointers are dangerous as they allow an attacker
to control the execution flow if overwritten via a vulnerable function. In glibc, many
pointers are manually protected against such manipulation by using a macro called
PTR_MANGLE. The macro XORs the pointer with a runtime-generated “key” value, sim-
ilar to a stack-canary value. Since the attacker has no information about this value, it
cannot redirect the pointer to an attacker-chosen address.

In C++, this technique could in principle be applied via smart pointers. However,
modern C++ code rarely uses pointers explicitly. For the most part, pointers are implic-
itly used to represent references or vtable entries, which cannot be treated that way.

The PointGuard GCC extension “encrypts” pointers automatically. It is available on
Windows, but apparently not widely used.

PointGuard Protecting Pointers From Buffer Overflow Vulnerabilities:

28

3.3 Heap-overflow detection / heap protection

https://www.helpnetsecurity.com/dl/articles/pointguard_usenix_
security2003.pdf

The idea behind PointGuard is closely related to binary randomization: Even though
pointer-manipulation vulnerabilities are presumed to be possible, an attacker is unable
to guess an interesting addresses to write to the manipulated pointer. But the two
approaches address the problem from the opposite directions.

3.3 Heap-overflow detection / heap protection

As discussed in Section 2.3.1 and supported by the CVEs reviewed in Section 4, heap
overflows remain one of the most prominent vulnerabilities. They are not covered by a
general mitigation technique like SSP for stack overflows.

In principle, attackers rely on the fact that a buffer located at the programs heap will
- when overflowing - corrupt data that is adjacent to the heap block. This data may be
meta data of the heap itself (as typical for list-based allocators that store meta data in
a header of the user data). But it may also be data structures (presumably containing
pointers) relied on by the attacked program.

Unfortunately, there is no easy way to mitigate heap overflows via a general tech-
nique (unlike SSP for stack overflows). The best mitigation would be the use of pro-
gramming languages that are not prone to memory-safety issues. However, since most
low-level applications and libraries are written in unsafe languages, the problem is ad-
dressed by a variety of band-aids:

3.3.1 Integrity checks of the heap’s metadata

Glibc’s heap implementation uses pointer obfuscation to reduce the likelihood that
an attacker can overwrite a metadata structure with meaningful pointer values. This
makes the heap implementation less vulnerable but does not help in situations where
other data is overwritten.

3.3.2 Randomization of heap allocations

Heap-overflow attacks depend on predictable allocation patterns. Only when knowing
the relative locations of the heap block containing the overflowing buffer and the heap-
block storing the to-be-manipulated data structure, the attacker can create the content
of the buffer overflow. Heap manipulation makes the layout of the heap block harder
to predict. On the other hand, it reduces the efficiency of the heap in several respects:

1. The higher the randomization (the entropy) of the block layout, the more frag-
mented the memory becomes. As a consequence, small gaps between memory
blocks stay unused, which artificially inflates the memory demand of the pro-
gram.

2. The computation of pseudo-random values consumes CPU time.

29

https://www.helpnetsecurity.com/dl/articles/pointguard_usenix_security2003.pdf
https://www.helpnetsecurity.com/dl/articles/pointguard_usenix_security2003.pdf

3.3 Heap-overflow detection / heap protection

3. The amount of meta data required to keep track of the heap layout grows because
there is very little likelihood for adjacent free ranges, which would normally be
merged into a single range. Consequently, the average metadata overhead may
increase approximately by the factor 2.

4. An increased amount of meta data implies a larger search space for allocations.

3.3.3 Guard pages between heap chunks

A heap uses coarse-grained memory objects as backing store. E.g., on Unix, a very
large consecutive virtual memory area is populated with an on-demand-paged mem-
ory object (e. g., via mmap for anonymous memory). Instead of using one consecutive
area, the heap may by organized in multiple chunks that are mapped to individual
virtual-memory positions. By leaving at least one virtual-memory page unused be-
tween chunks, a heap-buffer overflow is constrained to the memory blocks allocated
within the same chunk.

3.3.4 Cookies at the bounds of heap blocks

Similar to how stack canaries protect the integrity of their adjacent return address, a
cookie value placed at the upper boundary of each heap block can in principle detect
a heap-buffer overflow. But unlike SSP where there is a sensible time to check the
consistency (just before executing the ret instruction of the current function call), there
is no natural time when to perform heap integrity checks. E.g., checking the integrity
of the cookie when freeing the block would not help to protect long-living blocks.

3.3.5 Protecting the heap on Genode

In the following, we discuss the current role and implementation of Genode’s heap
along with possible hardening approaches.

Genode base framework Unlike programs running on a commodity operating sys-
tem where a heap is omnipresent, Genode components are not equipped with a heap
by default. For critical components, it is good practice to avoid any form of dynamic
memory management. By not using a heap, heap-overflows become a non-issue.

If components require dynamically allocated memory, the Genode API provides a
set of mechanisms where the heap is one tool of the tool box. In particular, multiple
instances of the heap may be used by different parts of the program (e. g., a service
may use a dedicated heap per client). For coarse-grained allocations (e. g., a per-client
session structure), the so-called sliced heap places each allocation in a dedicated virtual-
memory area and thereby minimizes the potential of side effects on other memory
objects. The heap implementation obtains its backing store in multiple independent
chunks (dataspaces) that are individually attached to the component’s address space.
Hence, the heap would implicitly benefit from the randomization of the dataspace-
attach operation and the provisioning of guard pages.

30

3.3 Heap-overflow detection / heap protection

All Genode allocators including the heap and sliced heap implement the same
Genode::Allocator interface. This interface is solely used as an argument to the
new operator. Malloc-style byte-wise allocations are supported in principle but not
used in practice. The Genode::Heap implementation keeps the heap’s meta data sep-
arate from payload data. Hence, a pointer to a block’s meta data cannot be calculated
from the block’s memory address. This is in contrast to traditional list-based heap
implementations that intertwine the heap’s meta data with the actual user data. There
is no detection of accesses that lie outside the bounds of an allocated block. However,
since the allocator is solely used in combination with the new operator for creating
objects of a concrete type with a known object size, out-of-bounds accesses are unlikely
with this pattern.

Possible improvements

Protection against the violation of Allocator constraints

Certain Genode::Allocator implementations accept allocations of limited
sizes only. For example, a slab allocator returns blocks of a specific size regardless
of the size argument specified. It is the responsibility of the allocator user to make
sure that an allocator specified to new matches the object size. The violation of
this invariant remains undetected.

A straight-forward improvement would be the addition of assertions to the
alloc operation of each individual allocator. However, this approach would
detect the programming error solely at runtime.

A better solution would be the detection at compile time. The suitability of an al-
locator for allocating a specific object could be enforced at compile time by lever-
aging the C++ type system. Allocators could be modelled as class templates that
provide their constraints (i. e., maximum allocation size) as type traits. The ob-
ject creation via new would be replaced by a template function that performs the
static checks of the compatibility of the to-be-created type with the allocator used.

Genode issue #1571

“base/allocator.h: retire new operators, introduce create function template
instead”

https://github.com/genodelabs/genode/issues/1571

Clearing memory on free

The current implementation of the Heap and Slab allocators do not clear the
managed memory.

Similarly to the discussion of preventing cold-boot attacks (XXX ref) at the gran-
ularity of dataspaces allocated from the RAM service, the clearing of memory on
free would be a consequent approach. Memory should be cleared by default with
the option to explicitly override the default in performance-critical situations.

31

https://github.com/genodelabs/genode/issues/1571

3.4 Address-space layout randomization (ASLR)

Storing the heap’s meta data from the user data in distinct dataspaces

In the current implementation, the heap’s meta data is allocated from the heap
itself. Therefore, the meta data may and up in a memory range adjacent to a user
data block. A buffer overflow inside the user data block could eventually corrupt
the meta data. An attacker with the knowledge about the allocation patters could
then predict or provoke such a situation.

Combined with the use of guard pages around attached dataspaces, this measure
would prevent a buffer overflow to corrupt meta data that is stored in a subse-
quent chunk.

C runtime The C runtime uses a slab-based allocation scheme for small blocks and
the Genode::Heap for large blocks.

The C runtime’s malloc back end was introduced because the FreeBSD’s original al-
locator relied on sbrk and on-demand-paged anonymous memory, which is not avail-
able on Genode. It would be worthwhile to investigate alternative and time-tested
allocators that do not rely on Unix mechanisms and feature heap-integrity protection.

3.4 Address-space layout randomization (ASLR)

By randomizing the address space of a vulnerable program, ASLR reduces the likeli-
hood that an attacker who has successfully seized control over the program (Section
2.3.1) steers the program’s control-flow towards an attacker-provided shellcode (Sec-
tion 2.3.2) or return-oriented program (Section 2.3.3). Without the knowledge about the
location of ROP gadgets within the program’s virtual address space, an attacker cannot
launch a ROP attack.

There exist various opportunities for randomization:

3.4.1 Randomizing library load addresses

By loading shared libraries to random locations, short running programs become hard
to attack. However, long running programs such as daemons may be attacked by first
gathering the information (the virtual address of a single library symbol is enough)
needed to compute gadget addresses, followed by a ROP attack using the gadgets.

On Genode, ELF objects are placed within the so-called linker area, which is a portion
of the component’s virtual address space that is managed manually by the dynamic
linker. There exist two opportunities for randomizing load addresses: First the base
address of the linker area could be randomly picked by the linker. Second the location
of each ELF object within the linker area could be randomized.

3.4.2 Randomizing executable load addresses

Unlike shared libraries, ELF executables are normally loaded at a link address that
is defined at build time. Hence, gadgets present within the executable have an

32

3.4 Address-space layout randomization (ASLR)

attacker-known location. However, modern tool chains allow the creation of position-
independent binaries, which principally enable the randomization of the executable’s
load address. On Linux on x86_64, position-independent binaries are used by default.

On Genode, ELF executables are not position-independent but there is no techni-
cal reason to use predefined link addresses. So this could be changed easily. The
randomization of the executable load address would be performed by the dynamic
linker analogously to the description of shared libraries above. However, also the
location of the dynamic linker should be picked randomly. The dynamic linker is
loaded by its parent. Therefore, the randomization would need to be implemented
in Genode::Child::Process of Genode’s base library.

3.4.3 Randomized stack locations

The location of stacks can be randomized within certain constraints, e. g., stack align-
ment and the virtual-memory layout conventions of the OS.

On Genode, the randomization of the stack location can be pursued at the following
levels:

Location of the stack area The stack area is a portion of the component’s virtual ad-
dress space that hosts all stacks. In the current implementation, its base address
is at a fixed location. However, since component code does not depend on the
specific location, the base address could be randomized at a granularity of 1 MiB.

Allocation of a slot within the stack area Each thread occupies a 1 MiB slot of vir-
tual memory within the stack area. Its stack is hosted somewhere within this slot.
Furthermore, a few contextual information of the thread are stored at the bound-
ary of the slot. This thread-local information can be accessed by the thread by
clearing the lower 10 bits of its stack pointer and thereby enable Genode to pro-
vide a thread-local storage mechanism that does not rely on dedicated register
(like a gs-segment-relative virtual register as used on Linux) and thereby works
across all kernels.

Currently, the slot used by a thread is determined by a deterministic bit allocator.
Randomizing the slot allocation would add 8 bits of entropy (the stack area has
256 slots).

User-level stack positions within their stack-area slots The location of the stack
within the thread’s slot could be randomized as long as the stack remains within
the bounds of the slot. The randomization at page-granularity would add up to
10 bits of entropy. The implementation of this idea would imply that we need
different mappings for the thread’s context information (at the end of the slot)
and the actual stack. The former could be turned into a R/O mapping so that the
pointers within the context cannot be forged by an attacker even it the pointer’s
location is known (or brute-forced).

start offset within the first page of the stack

33

3.4 Address-space layout randomization (ASLR)

Normally, the stack starts at the upper bound of the underlying 4 KiB page. How-
ever, the start address could be picked randomly as long as the alignment con-
straint of 16 bytes is met. Consequently, this idea would add 8 bits of entropy.
Note that this change would require us to enlarge the stacks by 4 KiB because up
to 4096 - 16 bytes may remain unused.

3.4.4 Randomization of memory mappings

When mapping files to a program’s virtual address space via mmap with a zero-address
argument, the kernel is free to pick an arbitrary value as the virtual base address of the
memory mapping.

On Genode, the corresponding mechanism is the Region_map::attach opera-
tion that attaches a dataspace to the region map of the component, thereby making
the dataspace’s content visible within the component’s virtual address space. If the
attach operation is invoked without an explicitly provided virtual address, core’s
RM service picks a location. The current implementation uses a deterministic best-fit
allocator for this purpose. In order to randomize the mapping addresses, there are two
ways forward, either by adding randomization to core’s region-map implementation or
by virtualizing core’s PD service through a new “shim” component that sits between a
to-be-randomized component and core. This component would transparently intercept
the attach operations and implement a custom (randomized) allocation strategy. The
appeal of the latter approach is that Genode’s core component can be left unmodified.
However, the disadvantage is that the interception of core’s PD service is possible only
at higher parts of the Genode component tree, not for components directly started by
the top-level init component (because init requests the PD sessions for its immediate
child components directly from init’s parent, which is core).

3.4.5 Randomizing the addresses of the heap chunks / the BRK boundary

If the heap allocates its backing store in multiple chunks rather than a single contiguous
anonymous memory mappings, the position of each chunk can be randomized by the
kernel’s mmap operation. This lowers the risk for heap-buffer overflows.

The brk boundary is used on traditional Unix systems to define the location of heap
allocations. By randomizing this boundary, dynamically allocated heap objects end up
at less predictable positions.

Genode does not use a concept like brk. Instead, the backing store of the heap is allo-
cated in multiple independent chunks (dataspaces). Thereby, the heap would implicitly
benefit from the randomization of memory mappings as described above.

3.4.6 VDSO randomization

VDSO (virtual dynamic shared object) is a trampoline mechanism used by the Linux
user land to issue system calls to the kernel.

34

3.4 Address-space layout randomization (ASLR)

Man page of the vdso mechanism

http://man7.org/linux/man-pages/man7/vdso.7.html

The VDSO memory object is provided by the kernel whereby the kernel maintains the
freedom to tune the kernel-entry mechanism to a suitable underlying mechanism (such
as int 0x80 or sysenter) without the need to relink the application. It is primarily
motivated by performance considerations. The VDSO mapping is installed at a random
position that is provided by the kernel to the process via the so-called “initial auxiliary
vector” (passed above the argument list and environment variables)

On Genode, there is no VDSO-like mechanism.

3.4.7 Kernel address-space layout randomization

What the randomization of executable load addresses is to regular user-level programs,
kernel ASLR is to the Linux kernel. The base address of the kernel image in virtual
memory is randomized. Still the content of the image has a static layout. With the
known kernel image and the address of a single symbol, all symbol addresses can be
calculated. (related to kptr_restrict)

On GNU/Linux, the feature is usually not enabled by default.

3.4.8 ELF layout randomization

The randomization of the code within a single ELF object is an interesting idea pro-
posed in the following paper:

Marlin A ne grained randomization approach to defend against ROP attacks:

https://w3.cs.jmu.edu/kirkpams/papers/nss13-marlin.pdf

Similar to the randomization of the load address of executables and shared libraries, the
idea addresses the mitigation of ROP attacks, but in a much more profound way. By
merely randomizing the load address of an ELF object, the attacker needs to know the
virtual address of just a single library symbol to calculate the addresses of all gadgets
present in the library. By randomizing the layout of the code within the ELF object at
its load time, this is no longer possible.

The paper presents a prototypical implementation but omits several details that
would be required in practice:

• It relies on objdump to perform the disassembly of the ELF binary. We would
need to have a fast instruction decoder that identifies the jmp locations to adjust.

• The paper does not address the use of shared libraries and the handling of the
PLT and GOT

35

http://man7.org/linux/man-pages/man7/vdso.7.html
https://w3.cs.jmu.edu/kirkpams/papers/nss13-marlin.pdf

3.4 Address-space layout randomization (ASLR)

However, ELF layout randomization is an intriguing approach. Granted, the code shuf-
fling is complex. So adding this feature to an OS kernel would imply an unwelcome in-
crease of kernel complexity. However, on Genode, the mechanism could be provided
by a dedicated ROM service component that transparently applies ELF shuffling to
ELF images obtained from another ROM service. Complex components that are likely
to be vulnerable could obtain their binaries via this component whereas other compo-
nent may obtain their binaries from Genode’s regular ROM services directly. This way
the presence of this feature would not negatively affect the TCB complexity of such
components.

3.4.9 Further opportunities to apply ASLR to Genode

This section reviews further ideas that may be possible in principle.

Allocations within the capability-selector space

Capability selectors are allocated via a deterministic bit allocator. This could be
changed to a randomized allocation strategy with the effect that an attacker could
not predict the meaning behind the selectors and thereby could not manually
issue RPC calls by directly using the kernel interface. On the first attempt to
invoke a capability with spurious arguments, the server would keep the RPC call
in a blocking state, halting the attacked program.

One could argue that a random allocation of capability-selector slots adds per-
formance costs but in practice, the import of new capabilities into a component’s
capability is a rare operation so that the overhead would be negligible.

The following ideas remain questionable and are presented solely for the sake of com-
pleteness.

Microkernel-stack randomization

The stacks of the microkernel (base-hw or NOVA) could in principle be placed at
random virtual kernel addresses. However, this may unreasonably increase the
microkernel complexity. In contrast to the kernel stacks of a monolithic kernel
that are exposed to a variety of highly complex subsystems and an overly bread
kernel interface, a microkernel’s stack is several orders of magnitude less likely to
be vulnerable (there is not much code in the kernel) and exposed to the user land
only via an extremely narrow interface.

UTCB location of the initial thread

The so-called user-level control block (UTCB) is a kernel-provided thread-specific
communication buffer that is used by the thread to pass/receive arguments
to/from the kernel. For the initial thread of a component, the UTCB is located at
a prior known position. The randomization of this position is difficult because we
would somehow need to propagate this address to a new thread w/o the thread’s
ability to interact with the kernel beforehand.

36

3.5 Fortify source

Slab entry allocations within a slab block

In the line of the argumentation of heap randomization, the allocation of slab
entries within slab blocks could be considered. However, slabs are usually em-
ployed as a deliberate performance optimization and designed for very quick al-
locations. The randomization would require a search to find the Nth free entry of
a slab block. This defeats the purpose of using a slab allocator in the first place.

3.5 Fortify source

“Fortify-source” is a compiler-assisted C-library-level mechanism to protect the use of
typically vulnerable functions:

memcpy, mempcpy, memmove, memset, strcpy, stpcpy, strncpy, strcat,
strncat, sprintf, vsprintf, snprintf, vsnprintf, gets

Like many threat-mitigation techniques, the principle direction was first suggested
by the OpenBSD community in the form of a -Wbounded compiler flag. The current
approach is described in the following article:

Enhance application security with FORTIFY_SOURCE

https://access.redhat.com/blogs/766093/posts/1976213

If enabled, the compiler emits warnings for failed static checks, and generates addi-
tional runtime checks for the given functions. The generated tests are effective even if
the programmer misses to check the validity of the arguments. If failed, the execution
of the program aborts. The mechanism works similar to manually written assertions
placed right before each call of the respective function. But the compiler generates
those assertions automatically. Note that the same effect could not be achieved by plac-
ing assertions in the called functions because the functions solely receive a pointer as
argument and are unaware of the dimensions of the underlying buffer in memory. So
the sanity checks have to be generated at the caller side.

The protection is limited by built-in heuristics about the known set of vulnerable
functions. It offers no protection against custom crafted vulnerabilities such as for
loops with out-of-bounds indices.

Fortify-source is designated to defeat pointer-manipulation attacks. In contrast to
-fstack-protector, the checks prevent not only stack smashing but also heap over-
flows and the override of local pointers. The compiler feature is available since GCC
version 4 and can be enabled by the -D_FORTIFY_SOURCE=1 compiler argument. The
mechanism could be enabled for Genode’s C runtime with relatively little effort. For
Genode’s base system, the technique has no effect because Genode’s API does not rest
on C library functions.

37

https://access.redhat.com/blogs/766093/posts/1976213

3.6 MMU mechanisms

3.6 MMU mechanisms

This section reviews protection mechanisms provided by the MMU (memory man-
agement unit) hardware. Being microkernel-based, Genode naturally relies on MMU
mechanisms in the form of virtual address spaces. The primary purpose of MMUs is
not discussed here. Instead, we focus on less traditional mechanisms, namely data-
execution prevention and supervisor-mode access/execution protection. For the sake
of completeness, we briefly cover zero-address protection in Section 3.6.3.

https://pax.grsecurity.net/docs/PaXTeam-H2HC12-PaX-kernel-self-protection.pdf

3.6.1 Data Execution Prevention (DEP)

Data execution prevention (DEP) prevents the execution of “shellcode” injected into
the stack or heap of a vulnerable program (Section 2.3.2) by marking memory map-
pings for the program’s data as non-executable in the MMU page tables. The ability
to mark memory mappings as non-executable is commonly referred to as “NX” bit.
Page-table entries are either marked as read-only (constant data sections), read-and-
executable (code), or read-writable (regular bss and data sections), but never writable
and executable at the same time.

DEP on the x86 architecture was pioneered by PaX (NOEXEC), which emulated the
non-existing NX bit on the x86 32-bit architecture. The emulation effectively turns x86
into a software-loaded TLB architecture. It works by marking all non-executable pages
as privileged (accessible only by the kernel). Once the user program tries to access the
data, a page fault is triggered (because of the attempt to access a privileged mapping).
Based on the information provided by the CPU along with the page-fault exception,
the in-kernel page-fault handler is able to distinguish the reason of the fault. If the fault
resulted from an instruction fetch, an attempt to execute injected code within a data
area is detected and the program aborts. If the fault was caused by a legitimate data
access, the page-fault handler temporarily marks the page as user page, populates the
DTLB (data translation look-a-side buffer) cache of the MMU by accessing the page,
and subsequently mark the page as privileged. Because the mapping is now present in
the DTLB, the user code will be served by the new DTLB entry when accessing the data
after the page-fault handler passes control back to the user land.

Fortunately, recent CPU architectures (ARM, 64-bit x86) are equipped with NX sup-
port in hardware. On Genode, we do not plan to implement the NX emulation mecha-
nism for the 32-bit x86 architecture because there is no good reason to use Genode on
x86-32 instead of x86-64.

The propagation of the non-executable page attribute must be done by both core and
the microkernel. In the current version of Genode, NX remains unused. However, the
implementation should be straight-forward for the NOVA and the base-hw kernel.

mprotect, sealing of Genode dataspaces, PLT protection On Linux, existing map-
pings can be downgraded via the mprotect system call. This is useful in situations

38

3.6 MMU mechanisms

where certain parts of the address space are expected to be constant over the further
lifetime of the program.

On Genode, there is no mprotect-like mechanism. To accommodate the use cases of
mprotect, Genode’s RAM could be extended by a mechanism to “seal” a RAM datas-
pace to become read-only. This operation is irreversible until the destruction of the
dataspace. A practical application would be a ROM provider that would first populate
a RAM dataspace with information but turns the RAM dataspace into a ROM datas-
pace before handing it out to its client. Another example would the dynamic linker,
which would be able to change the PLT section of an BIND_NOW-loaded program to a
read-only mapping after initializing all PLT entries.

3.6.2 Supervisor Mode Access/Execution Protection (SMAP and SMEP)

The supervisor-mode access/execution protection (SMAP/SMEP) feature of modern
MMU hardware protects the OS kernel from accidentally accessing or executing user
memory.

Intel CPU security features

https://github.com/huku-/research/wiki/Intel-CPU-security-features

In a traditional attack pattern, the attacker places “shellcode” in arbitrary user memory,
enters the kernel (via a system call), triggers a vulnerable kernel function (e. g., missing
user-pointer check), and then tricks the kernel into jumping directly to the shellcode.
Consequently, the attacker-controlled code is executed with kernel privileges. SMEP
counters this kind of attack by disallowing the kernel to execute user pages.

Prior to the hardware-based SMEP mechanism, the PaX UDEREF feature pursued a
very similar idea that unmaps the userland when entering the kernel mode.

On monolithic-kernel OSes, SMEP can be circumvented by sneaking “shellcode” into
the kernel-address space, e. g., as payload that is buffered in the kernel. Normally such
payload will ultimately be stored in non-executable memory inside the kernel. How-
ever, in some circumstances, such payload is placed in executable memory pools (GDI
palette object on Windows 8) as described in the following article:

Intel SMEP overview and partial bypass on Windows 8

http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html

Also, 3rd-party drivers are sometimes unaware of NX memory pools and store objects
in executable memory. Other attacks try to change a page-table entry at known virtual
addresses in the kernel and transform a user page into a kernel page.

Modifying Paging Structures

https://www.coresecurity.com/system/files/publications/2016/05/Windows%20SMEP%20bypass%

20U%3DS.pdf

39

https://github.com/huku-/research/wiki/Intel-CPU-security-features
http://blog.ptsecurity.com/2012/09/intel-smep-overview-and-partial-bypass.html
https://www.coresecurity.com/system/files/publications/2016/05/Windows%20SMEP%20bypass%20U%3DS.pdf
https://www.coresecurity.com/system/files/publications/2016/05/Windows%20SMEP%20bypass%20U%3DS.pdf

3.6 MMU mechanisms

SMAP/SMAP on Genode On Genode, the interaction between a user thread and the
microkernel is based on an extremely minimalistic mechanism called UTCB (user-level
thread control block). There is one UTCB per user thread. The UTCB is a single memory
page that is pinned in the microkernel’s virtual address space (via a privileged map-
ping), and is also mapped inside the user space (via a user mapping). The microkernel
never accesses the user-space mapping but solely the kernel mapping. Since UTCBs
are pinned, the kernel can never fault when accessing a UTCB (no need to handle re-
cursive page faults). A UTCB is used like an enlarged register set where arguments can
be transferred between the user thread and the kernel. The interaction between a user
thread and the microkernel works as follows:

1. User code writes content to the UTCB (e. g., an IPC message)

2. Invoke a syscall (passing further arguments in CPU registers) → entering the ker-
nel, the transition code switches to the kernel stack

3. Kernel consumes UTCB content, performs kernel operation, it may populate the
UTCB with results (e. g., an received IPC message)

4. Transition from kernel to user

5. User code consumes the new UTCB content

Because a UTCB is not shared between threads or PDs, it is not prone to leak informa-
tion between PDs. Pointers are never passed as arguments to system calls! Neither in
registers nor via the UTCB. The kernel never interprets pointers originating from user
space.

SMEP/SMAP protection is very simple to support in Genode because the kernel is
not expected to touch the user space anyway.

Technicalities:

• Page-table entries are already setting the U/S (user mode) flag for user pages.

• Check if SMEP is supported via CPUID.

• CR4.SMEP, CR4.SMAP must be set to enable the feature.

• If a mapping is changed from kernel to user, the TLB must be invalidated.

3.6.3 0-address protection

The first virtual-memory page cannot be populated via a memory mapping so a de-
referenced null-pointer produces an unresolvable page fault.

This restriction applies to all Genode components.

40

3.7 Seccomp

3.7 Seccomp

Seccomp is a sandboxing mechanism for Linux introduced in 2005.

Seccomp and sandboxing (2009)

https://lwn.net/Articles/332974/

A seccomp overview (2015)

https://lwn.net/Articles/656307/

After an initialization phase, the Linux process drops its privileges via a prctl or
seccomp (since 2014) system call. After this point, seccomp prevents the process from
invoking any system calls except read, write, exit, and sigreturn. On some ver-
sions of Linux, entering seccomp may also disable the rdtsc instruction. The sand-
boxed code is limited to plain computations and the interaction with the file descriptors
that were initialized prior entering the sandbox.

Seccomp remained a fairly obscure feature for several years with Google being
the most prominent early user for running “native client” (NaCl) applications in the
Chromium web browser. In this scenario, all interactions of the application with the
outside world have to be issued indirectly via a “monitor” process that listens on one
of the file descriptors passed to the sandbox. This puts the monitor in a position where
it can validate all requests before performing the operation on the behalf of the sand-
boxed application. This design greatly reduces the attack surface of the kernel or any
global resources, which can no longer be accessed directly. Hence, attackers need to
find a vulnerability in the relatively small “monitor”.

According to the LWN article cited above, Google initiated the discussion to make
seccomp more flexible by introducing different “modes” of operation. This idea was
eventually implemented by seccomp-bpf (BPF stands for Berkeley Packet Filter), which
introduced a configurable policy for filtering system calls and system-call arguments.
Today, seccomp-bpf is used by OpenSSH, Docker (optional feature), Cjdns, Tor, LXD
(according to Wikipedia). Since seccomp became configurable, it is conveniently used
(e. g., by Docker) to enforce system-call filtering policies (actually not implementing the
“monitor” model). So users of Docker can tune the system calls usable by a container.

The “monitor” model of seccomp has similarities to Genode’s parent-child relation-
ship where the parent is able to interpose all interactions of the child with the outside
world. In Genode, all components, except core, are effectively executed like seccomp’ed
processes. The performance drawback of the monitoring approach, as mentioned in the
LWN article, is addressed by Genode’s session concept, which alleviates indirections
through the monitor (or several nested monitors) when a child interacts with a service.

3.8 POSIX capabilities

POSIX capabilities are attributes of executable files that express the program’s ability
to perform certain system calls. Instead of granting a program root privileges, POSIX

41

https://lwn.net/Articles/332974/
https://lwn.net/Articles/656307/

3.9 Mandatory Access Control (MAC)

capabilities can be used to allow a certain operation that is normally privileged, e. g.,
creating a bind mount. This reduces the need to grant all-encompassing root privileges
to programs and decreases the likelihood for ambient authority problems as described
in Section 2.3.

Thanks to the fine-grained privilege separation, as facilitated by Genode’s compo-
nent architecture and its capability-based access-control model, Genode does not suffer
from the problem addressed by POSIX capabilities. E.g., there is not even the notion of
a root user to start with.

3.9 Mandatory Access Control (MAC)

Access control on traditional Unix systems is based on discretionary access control
where each file carries information about its owner (user, group) and the access permis-
sions (read, write, execute) for the respective user, group, and the public. In addition to
this traditional access-control scheme, Linux supports several policy frameworks that
allow the user/admin to define the access rights of programs (subjects) to resources
(objects).

The framework uses a common Linux kernel infrastructure called Linux Security
Modules as underlying mechanism and addresses the problem of ambient authority
that is otherwise inherent to traditional Unix systems.

Linux Security Modules (LSM) Linux Security Modules (LSM) provide a mecha-
nism to interpose system calls and introduce policy hooks (also called “upcall”) for
operations that are deemed to need policing. Each time such an operation ought to be
performed, an upcall requests a policy decision based on the operation arguments and
the subject that initiated the operation. A explicit policy decision is taken for each ac-
cess individually, hence the name “mandatory access control”. LSM is a moving target.
As the kernel changes, the hooks change, and policies need to be adapted.

In contrast to LSM-based MAC frameworks, Genode does not employ a system-
global policy but is based on a decentralized capability-based access-control model
where policies are expressed at different levels of Genode’s component hierarchy. In
particular, there is no need for a global system administrator with an all-encompassing
view of the entire system.

SELinux SELinux is an “inode-based” MAC framework. Each time a program issues
an operation, the policy module is requested to take a policy decision based on the sub-
ject, the accessed objects, and the type of operation. As a framework for expressing poli-
cies, subjects and objects are subsumed into categories. Assigning “user”, “role”, and
“domain” attributes to subjects; or “name”, “domain”, and “type” attributes to objects.
The object identities are based on inodes (in contrast to paths as used by AppArmor).
Different models of expressing policies are provided: type enforcement, role-based ac-
cess control (RBAC), and multi-level security.

42

3.9 Mandatory Access Control (MAC)

SELinux policies tend to become extremely complex because the criterion for a policy
decision is complex and the policy has to capture a system-global view. The burden is
left to the policy writer. One needs to know the semantics and the consequences of all
operations that are equipped with policy hooks. This is difficult.

If a policy hook is missing from a code path that issues a critical operation, SELinux
remains without effect.

It is not enough to equip the kernel with policy hooks. But all user-level services
shared by differently-labeled subjects must be covered as well. E.g., the X server is
such a service, which comes with a corresponding extension called XACE.

SELinux is nicely applicable to daemons and the parts of the system that do not
change over time, but hard to apply for parts that are dynamically changing (e. g., cre-
ating a new user, hotplugging of USB devices).

The following study provides an insightful qualitative analysis of the MAC systems
SELinux, AppArmor, and FBAC-LSM.

Towards Usable Application-Oriented Access Controls

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.669.
2435&rep=rep1&type=pdf

AppArmor AppArmor limits (“confines”) programs to a set of files and POSIX capa-
bilities with respect to file access, the loading of shared libraries, the execution of child
processes, network access, DBus API access, and ptrace access. Compared to SELinux,
it follows a more pragmatic approach.

FBAC-LSM In FBAC-LSM, policies are expressed as hierarchies of functionalities.

FBAC-LSM - protect yourself from your apps

http://schreuders.org/FBAC-LSM/

Compared to SELinux and AppArmor, users are not bothered with too many technical
details but can reason about policies on a more useful level.

SMACK SMACK is a MAC framework that provides a subset of SELinux but is im-
plemented using LSM directly instead of using SELinux.

Simplified Mandatory Access Control Kernel

http://schaufler-ca.com/description_from_the_linux_source_
tree

It uses extended file attributes “xattr” to attach labels to files. Labels are assigned to
subjects (tasks) and objects, which is a simplifications compared to SELinux.

43

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.669.2435&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.669.2435&rep=rep1&type=pdf
http://schreuders.org/FBAC-LSM/
http://schaufler-ca.com/description_from_the_linux_source_tree
http://schaufler-ca.com/description_from_the_linux_source_tree

3.10 Information leakage prevention

3.10 Information leakage prevention

3.10.1 /proc/$pid/maps protection

The information in /proc/$pid/maps used to be world-readable. However, a local
attacker may use the knowledge about the virtual address-space layout of any process
to circumvent ASLR for launching ROP attacks. For this reason, current Linux systems
deny the global access of this information.

On Genode, there is no globally visible information like /proc.

3.10.2 Stack leakage in the padding in API data structures

Section 2.2.3 introduced the problem of leaking information via uninitialized parts of
parameter structures.

There exists no generally applicable mitigation for this problem on commodity OSes.
Within Genode, the problem may occur for RPC functions that pass structured data
as RPC arguments. To make sure that all those types are void of any padding, static
assertions may be leveraged. E.g.,

struct status {
short device_id;
long status_bits;

};

static_assert(sizeof(device_id) + sizeof(status_bits)
== sizeof(status),
"possible information leak");

Furthermore, all types that are potentially passed as RPC arguments could be aug-
mented with a Rpc_arg base class that clears the object at its construction time unless
explicitly prevented. Skipping the clearing would require the programmer to take a
cautious decision with an accompanied explanation (e. g., the absence of padding is
shown by a static assertion). Genode’s RPC mechanism could check the adherence of
RPC arguments to this regime at compile time, allowing only basic types and types
tagged as Rpc_args to be used as RPC arguments.

3.10.3 Kernel Address Display Restriction and dmesg restrictions

This mitigation measure tries to hide the address-space layout of the kernel from at-
tackers so that exploits cannot adapt their operation to the present layout. If enabled,
kernel addresses are not spilled in logs or via the /proc interface, and the read access
to the kernel image (vmlinuz, System.map) is prevented.

kptr_restrict for hiding kernel pointers

https://lwn.net/Articles/420403/

44

https://lwn.net/Articles/420403/

3.11 Diminishing the attack surface

The leakage of kernel pointers is prevented by using a dedicated format specifier
"%pK” in the kernel. If kptr_restrict is enabled, any pointers printed via this format
specifier will appear as “0”. For format strings that don’t use this format specifier,
kptr_restrict is without effect.

Many kernel pointers are still present in the output of dmesg. The following article
exemplifies how the kptr_restrict feature can be side-stepped.

Effectively bypassing kptr_restrict on Android

http://bits-please.blogspot.de/2015/08/effectively-bypassing-kptrrestrict-on.html

On Genode, a regular component is not able to observe kernel output and the kernel
image. Still the ELF image of core, other components of the initial static system, or the
NOVA kernel’s hypervisor information page are accessible via core’s ROM service. For
this reason, ROM session requests from arbitrary components should not uncondition-
ally be routed to core’s ROM service. When deploying Genode, ROM sessions should
be routed on a per-label basis

3.11 Diminishing the attack surface

The mechanisms compiled in this section are Linux-specific precautions that are recom-
mended to avoid unnecessary attack vectors. They are largely unrelated to Genode.

3.11.1 Hardlink restrictions

Genode has no notion of hardlinks.

3.11.2 ptrace scope

Ptrace is a system call that allows a process to manipulate or inspect another process of
the same user. Its designated use case are debuggers. However, a compromised user
program may ptrace to spy on sensitive processes of the user that are currently running
- such as SSH sessions or GPG agent. For this reason, recent GNU/Linux distributions
restrict the use of ptrace.

On Genode, there is no debugging facility comparable to ptrace. In order to debug a
program, the program must to be executed under the control of the debugger in the first
place. Since the debugger is the parent (the owner) of the debugging target, it naturally
has the authority to inspect or manipulate the debugging target. There is no way to
debug an unrelated component.

3.11.3 /dev/mem protection

The /dev/mem pseudo device allows user-level programs to directly map portions of
the physical memory into their virtual address spaces. The most prominent user is the
X server.

45

http://bits-please.blogspot.de/2015/08/effectively-bypassing-kptrrestrict-on.html

3.12 Further mitigation mechanisms on non-Linux OSes

On Genode, access to physical memory is arbitrated via core’s RAM and IO_MEM
services. Those services ensure that no physical RAM page is handed out twice. The
access to IO_MEM is preserved to user-level device drivers. Actually, regular user-level
device drivers don’t access this service directly but use the platform driver instead. The
platform driver adds the notion of devices to the system and enforces access control at
device granularity.

3.11.4 Disabling /dev/kmem

Genode provides no way to let user programs access any kernel memory.

3.11.5 Block module loading and kexec

The microkernel is not expandable by loadable modules.
Kexec is a feature to update the kernel at runtime without the need to reboot the

machine.
There is no mechanism to replace the microkernel at runtime.

3.11.6 Blacklisting of rare protocols

There are no rare protocols or similar functionality dynamically loaded into the TCB of
Genode.

3.12 Further mitigation mechanisms on non-Linux OSes

This section reviews approaches that we deem as noteworthy for their novelty or as
source of inspiration.

3.12.1 Pledges (OpenBSD)

In contrast to most mitigation techniques that are focused on subverting different stages
of privilege-escalation attacks 2.3, OpenBSDs “pledges” try to limit the reach of the
actual exploitation phase of an attack (Section 2.4). The mechanism can be applied to
applications that are trusted but may be vulnerable. Examples are the OpenBSD user-
land tools and daemons that ship with OpenBSD.

pledge() a new mitigation mechanism (2015)

http://www.openbsd.org/papers/hackfest2015-pledge/mgp00001.
html

The developer annotates program code with assumptions about the future behavior
of the program. The program “pledges” that it will behave in a certain way in the
future. If it happens to violate its pledge, it may have been compromised. Hence,
pledges express a high-level model of the application’s own behavior in advance of its
execution. It therefore represents a form of privilege dropping. It makes it harder to

46

http://www.openbsd.org/papers/hackfest2015-pledge/mgp00001.html
http://www.openbsd.org/papers/hackfest2015-pledge/mgp00001.html

3.12 Further mitigation mechanisms on non-Linux OSes

exploit a vulnerability of a program that is treated with pledges because the attacker’s
won’t be able to extend the model of the program’s behavior.

The pledge approach is closely tied to the semantics of the OpenBSD POSIX system.
It is not directly transferable to Genode. Genode’s approach would be to use short-
living sandboxes to execute code that is complicated. The sandbox can be subjected
to a rigid policy similar to the different types of “pledges”. E.g., a sub-component for
decoding a PNG images would receive the PNG image presented as a ROM session, it
can write the pixels into a framebuffer session, but is not able to obtain a file-system or
NIC session or any other session to an unrelated service. This approach corresponds
to OpenBSD’s privilege separation as implemented for a few selected daemons like
OpenSSH. But in contrast to Unix-based operating systems where sandboxing requires
additional effort and considerations, Genode’s component architecture leverages sand-
boxing inherently.

3.12.2 Host-based intrusion detection (HIDS)

Host-based intrusion detection systems monitor the behavior of the system at runtime:

Host-based intrusion-detection system

https://en.wikipedia.org/wiki/Host-based_intrusion_detection_
system

They detect persistent changes in the system, e. g., caused by an attacker installing a
backdoor as payload of a successful exploit. Furthermore, the integrity of certain data
structures (like the system-call table of the kernel) is monitored. If an anomaly is de-
tected, the HIDS triggers an alarm, similarly to how AntiVirus software responds to
detected malware. A HIDS puts itself in the shoe of a cautious user that monitors the
operation of his machine and the files stored on the file system.

3.12.3 Microsoft EMET defense against ROP attacks

Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) provides a number of
hardening “features” that can be selectively applied according to a policy defined by
an educated user.

Microsoft Enhanced Mitigation Experience Toolkit (EMET)

https://adsecurity.org/?p=157

Among the features is an interesting counter measure against ROP on Windows:
“EMET makes sure that when a critical function is reached, it is reached via a CALL

instruction rather than a RET instruction. This is a very useful mitigation and breaks
many ROP gadgets. This mitigation may be incompatible with some applications. This
mitigation is available for 32 bit processes.”

47

https://en.wikipedia.org/wiki/Host-based_intrusion_detection_system
https://en.wikipedia.org/wiki/Host-based_intrusion_detection_system
https://adsecurity.org/?p=157

3.12 Further mitigation mechanisms on non-Linux OSes

However mitigations with a similar line of thinking (i. e., let the potentially com-
promised code check its own integrity) had been repeatedly implemented and subse-
quently defeated. While they raise the barrier for the current generation of attacks,
the next generation will take this mitigation into account and work around it. In the
longer term, the effect of such a cat-and-mouse game is an inflated complexity of the
to-be-defended program.

48

4 Review of recent CVEs

This section reviews recently published Common Vulnerabilities and Exposures (CVEs)
from Genode’s perspective. Even though Genode’s scope goes beyond that of an OS
kernel, the review focuses of the CVEs related to Xen and Linux as the predominant
open-source OS foundations.

During the review, certain repetitive patters become apparent. Section 4.1 discusses
those patterns. It is followed by Sections 4.2 and 4.3 that contain the annotated sum-
maries of the CVEs referring to the Xen hypervisor and the Linux kernel in between
January and August of 2016. The annotations discuss their potential relation to Gen-
ode. Within these sections, the short descriptions given by the CVS appear emphasized.
Our annotations are given in a regular typeface. Important Genode-related consider-
ations are highlighted as bold text. Section 4.4 summarizes the lessons learned from
reviewing the CVEs.

4.1 Typical kinds of vulnerabilities

4.1.1 Double-fetch issues

Double-fetch issues are related to time-of-test time-of-use issues. A service (like a de-
vice driver) receives a request for an operation along with parameters that are provided
in a buffer shared with the client. If a value is repeatedly fetched from the buffer, the
driver code expects the value to remain constant. However, the client may modify it
at any point in time, corrupting the program flow or offset calculations that depend on
the fetched values.

On Genode, services usually offer their operations via RPC interfaces. Genode’s RPC
mechanism is immune to double-fetch issues because client and server never operate
on the same buffer. Arguments are copied by the microkernel via the IPC operation.

Double-fetch issues may still occur in situations where two components communi-
cate over shared memory. The access to such shared memory buffers is typically safe-
guarded in C++ classes that facilitate save patterns, e. g., the so-called packet-stream
interface takes care of copying-out packet descriptors.

4.1.2 Kernel-information leaks via parameter structures

Kernel-internal information can leak in several ways. But by far the most prominent
vulnerabilities are information leaks via incompletely initialized parameter structures
as explained in Section 2.2.3.

In principle, this problem could be mitigated by clearing the kernel stack on each
kernel entry. Grsecurity’s “STACKLEAK” plugin implements this idea. However, this
technique seems to be generally regarded as impractical due to its performance costs.

4.1.3 Dereferenced null pointers or dangling pointers

• memory corruption

49

4.2 Xen hypervisor

• fatal for the entire system

4.2 Xen hypervisor

http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=xen+2016

CVE-2016-6259 denial of service (missing SMAP whitelisting)

Xen 4.5.x through 4.7.x do not implement Supervisor Mode Access Prevention (SMAP)
whitelisting in 32-bit exception and event delivery, which allows local 32-bit PV guest
OS kernels to cause a denial of service (hypervisor and VM crash) by triggering a safety
check.

The Xen hypervisor delivers exception information to paravirtualized 32-bit guest
VMs by directly writing to user-space, which triggers a SMAP violation. The
guest can deliberately trigger this condition. This issue would not occur on Gen-
ode because the microkernel never legitimately accesses the user space.

CVE-2016-6258 privilege escalation

The PV pagetable code in arch/x86/mm.c in Xen 4.7.x and earlier allows local 32-bit PV
guest OS administrators to gain host OS privileges by leveraging fast-paths for updating
pagetable entries.

An optimization in the hypervisor missed to validate input from the untrusted
PV guest. Genode does not provide a PV mechanism as present in Xen. Hence
the complexity of paravirtualized page-table manipulations is avoided by using
the EPT mechanism of the hardware.

CVE-2016-5242 denial of service

The p2m_teardown function in arch/arm/p2m.c in Xen 4.4.x through 4.6.x allows local
guest OS users with access to the driver domain to cause a denial of service (NULL pointer
dereference and host OS crash) by creating concurrent domains and holding references to
them, related to VMID exhaustion.

The allocation of VMIDs (similar to TLB tags) failed to consider the situation
where the physically-limited ID space gets exhausted. In this condition, a null
pointer was dereferenced, crashing the hypervisor. The condition could be trig-
gered by guests that could deliberately trigger the allocation of VMIDs.

There is no simple-to-apply mitigation technique for these kind of bugs. System-
atic tests of corner cases like this should be in place. The problem is related to
the overflowing of reference counters. All places where refcounts of server-side
objects can be manipulated by untrusted clients deserve special attention.

In Genode, similar issues to the exhaustion of physically-limited resources ex-
ist. E.g., the number of capabilities is globally limited. A component can allo-
cate capabilities in an infinite loop to exhaust them. This problem should be
solved by subjecting capability allocation to the same accounting scheme that
Genode uses for physical memory.

50

4.2 Xen hypervisor

Genode capabilities are reference counted. This lifetime management scheme
could be changed to circular linked smart pointers such that no upper limit of
the number of references exists.

CVE-2016-4963 denial of service

The libxl device-handling in Xen through 4.6.x allows local guest OS users with access to
the driver domain to cause a denial of service (management tool confusion) by manipulat-
ing information in the backend directories in xenstore.

This is an input-validation problem where a central service interprets directory
structures that are under control of untrusted driver domains. There is no equiv-
alent of a global Xen store on Genode. Still, management components may in-
terpret information reported by untrusted components (via Genode’s report ses-
sion). It goes without saying that such information must be parsed defensively.

CVE-2016-4962 denial of service, potential privilege escalation

The libxl device-handling in Xen 4.6.x and earlier allows local OS guest administrators to
cause a denial of service (resource consumption or management facility confusion) or gain
host OS privileges by manipulating information in guest controlled areas of xenstore.

Central management tools use to rely on meta data (kept at the Xenstore) that is
under control of untrusted device VMs. In particular, a device VM may remove
meta data that is needed to properly release resources on device VM destruction.
In short, the integrity of the meta data operated on by central management com-
ponents is unprotected.

The issue does not apply to Genode as there is no equivalent to a Xenstore.

CVE-2016-4480 privilege escalation

The guest_walk_tables function in arch/x86/mm/guest_walk.c in Xen 4.6.x and earlier
does not properly handle the Page Size (PS) page table entry bit at the L4 and L3 page table
levels, which might allow local guest OS users to gain privileges via a crafted mapping of
memory.

The software page-table walker in the hypervisor misinterpreted page-table struc-
tures (by not interpreting the so-called “page size bit”). On Genode, there is not
page-table walker interpreting guest page tables in the kernel or core. When host-
ing a guest VM on top of Genode, the page-table-walker is encapsulated in the
VM-specific user-level virtual-machine monitor, which is untrusted. Hence, the
flaw - if present - would have no consequences beyond the particular virtual ma-
chine.

CVE-2016-3960 denial of service, potential privilege escalation

Integer overflow in the x86 shadow pagetable code in Xen allows local guest OS users to
cause a denial of service (host crash) or possibly gain privileges by shadowing a superpage
mapping.

51

4.2 Xen hypervisor

The aliasing of superpages with page-table structures was not implemented cor-
rectly, leading to a later de-reference of an undefined pointer. Similar issues could
occur in a microkernel implementation. In the specific CVE the undefined pointer
was fortunately a null pointer. If it was a dangling pointer, kernel ASLR would
have helped to mitigate attacks exploiting this bug.

CVE-2016-3159/3158 information leak across VMs

The xrstor function in arch/x86/xstate.c in Xen 4.x does not properly handle writes to the
hardware FSW.ES bit when running on AMD64 processors, which allows local guest OS
users to obtain sensitive register content information from another guest by leveraging
pending exception and mask bits. NOTE: this vulnerability exists because of an incorrect
fix for CVE-2013-2076.

The fpu_fxrstor function in arch/x86/i387.c in Xen 4.x does not properly handle writes
to the hardware FSW.ES bit when running on AMD64 processors, which allows local
guest OS users to obtain sensitive register content information from another guest by
leveraging pending exception and mask bits. NOTE: this vulnerability exists because of
an incorrect fix for CVE-2013-2076.

The FPU emulation on AMD CPUs was not implemented correctly. In Gen-
ode/NOVA, instructions are not emulated in the kernel/hypervisor but solely
by the untrusted user-level VMM.

However, in general, leaks via register contents may be present in a microker-
nel implementation of the context switching between threads. If the kernel
misses to copy a register, one thread could read the register content previously
written by another thread. There is no general mitigation measure that would
counter such a hole in the implementation.

CVE-2016-2271 denial of service

VMX in Xen 4.6.x and earlier, when using an Intel or Cyrix CPU, allows local HVM
guest users to cause a denial of service (guest crash) via vectors related to a non-canonical
RIP.

A guest user program may deliberately modify the instruction pointer in a way
that a consecutive VM entry will fail, leading to a crash of the entire VM. The
issue has no consequences outside the single guest. In principle, this issue may
be present in user-level VMMs on top of Genode. Genode’s architecture would
not help, but no mitigation measure would help either.

CVE-2016-2270 denial of service

Xen 4.6.x and earlier allows local guest administrators to cause a denial of service (host
reboot) via vectors related to multiple mappings of MMIO pages with different cachability
settings.

Guest OSes are able to deliberately produce inconsistencies in the cache attributes
for memory pages. According to the Intel specification, such inconsistencies may
yield undefined behavior such as a machine reboot.

52

4.3 Linux kernel

Genode satisfies the invariant mandated by the specification by fixing cache at-
tributes to physical memory objects (dataspaces). The attributes are cached/un-
cached (for RAM) or write-combined/in-order (for memory-mapped I/O re-
sources). All memory mappings consistently inherit the attributes of the under-
lying dataspace.

CVE-2016-1571 denial of service

The paging_invlpg function in include/asm-x86/paging.h in Xen 3.3.x through 4.6.x,
when using shadow mode paging or nested virtualization is enabled, allows local HVM
guest users to cause a denial of service (host crash) via a non-canonical guest address in
an INVVPID instruction, which triggers a hypervisor bug check.

This is an instruction-emulator issue. On Genode, this issue would be contained
in the untrusted user-level VMM. The Genode system outside the VM would re-
main unaffected.

CVE-2016-1570 privilege escalation

The PV superpage functionality in arch/x86/mm.c in Xen 3.4.0, 3.4.1, and 4.1.x through
4.6.x allows local PV guests to obtain sensitive information, cause a denial of service,
gain privileges, or have unspecified other impact via a crafted page identifier (MFN) to
the (1) MMUEXT_MARK_SUPER or (2) MMUEXT_UNMARK_SUPER sub-op in
the HYPERVISOR_mmuext_op hypercall or (3) unknown vectors related to page table
updates.

Lacking validation of untrusted input allows PV guests to manipulate page-table
structures. On Genode, there is no equivalent to Xen’s PV guests.

4.3 Linux kernel

http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel+2016
The CVEs for the Linux kernel refer to various parts of the kernel. In the follow-

ing, we distinguish device drivers, protocol stacks, low-level kernel mechanisms, and
security features.

4.3.1 Bugs in device drivers

Device drivers amount for the biggest share of kernel code. Hence, the fact that most
CVEs refer to device drivers is not surprising. We expect the dark figure to be even
much higher since device drivers receive relatively little attention from reviewers com-
pared to generic parts of the kernel. The relevance of drivers is limited to the respective
devices. So there is less incentive to review driver code compared to parts that are used
by a big share of users. In cases where drivers undergo an actual review, large batches
of CVEs are the result as illustrated by the 11 CVEs for Qualcomm device drivers.

The attack vectors on device drivers fall in two categories:

53

4.3 Linux kernel

Vulnerabilities triggered by devices

Many device drivers expect their devices to be well-behaving because malicious
devices as an attack model are relatively uncommon. However, given the fact that
low-cost programmable USB dongles can mimic any kind of USB device, attacks
via pluggable devices are no fiction. Granted, an attacker needs proximity to the
machine. But there are many scenarios where this is the case such as using a
laptop in a public environment.

Most CVEs of this kind result in dereferenced null pointers, effectively crashing
the kernel. But the consequences of others are circumscribed as “other unspecified
impact”, in particular in the presence of a buffer overflow or memory corruption.

Vulnerabilities triggered via the user-level device API

Most device drivers expose the functionality of their device in the form of a de-
vice node to the user land. User-space applications that need to interact with the
device open the corresponding pseudo file and access the device’s functionality
via ioctl operations on the file handle. The actual ioctl operations and their
parameters are implemented specifically for each device driver.

The ioctl mechanism for the interaction of user-level software with devices is in-
herently prone to kernel-information leaks via parameter structures and double-
fetch issues.

User-level access control policies effectively limit this attack vector to a few legit-
imate applications unless those policies can be circumvented. Some of the CVEs
discussed in 4.3.4 would potentially open the door for illegitimate users of de-
vices.

In contrast to Linux where device drivers offer hugely diverse ioctl interfaces,
driver components on Genode solely implement generic interfaces that are de-
fined per device class (block, framebuffer, input). Most driver-specific operations
that inflate the ioctl interfaces of Linux drivers are concerned with device con-
figuration rather than device operation. On Genode, the configuration of devices
is covered by an out-of-band component configuration mechanism, which is not
exposed to the clients of the device.

Most of the vulnerabilities listed below have the potential to crash the kernel. Several
may be exploitable or compromise the machine (“unspecified impact”). Such an exploit
may affect any part of the system. Kernel ASLR helps to counter such exploitation
attempts.

On a Genode system, none of the vulnerabilities would have such drastic conse-
quences because each driver lives in a dedicated user-level component. If a driver
crashes, it becomes unavailable to its client but the reach of the problem is limited by
the functional scope of the driver. E.g., a crashing or compromised USB driver won’t
put any data stored on a SATA disk at risk.

CVE-2016-6480 kernel crash caused by double-fetch issue

54

4.3 Linux kernel

Race condition in the ioctl_send_fib function in drivers/scsi/aacraid/commctrl.c in the
Linux kernel through 4.7 allows local users to cause a denial of service (out-of-bounds ac-
cess or system crash) by changing a certain size value, aka a “double fetch” vulnerability.

CVE-2016-6130 kernel-information leak caused by double-fetch issue

Race condition in the sclp_ctl_ioctl_sccb function in drivers/s390/char/sclp_ctl.c in the
Linux kernel before 4.6 allows local users to obtain sensitive information from kernel
memory by changing a certain length value, aka a “double fetch” vulnerability.

CVE-2016-6156 double fetch in Chrome OS embedded controller

Race condition in the ec_device_ioctl_xcmd function in drivers/platform/chrome/cros_ec_dev.c
in the Linux kernel before 4.7 allows local users to cause a denial of service (out-of-bounds
array access) by changing a certain size value, aka a “double fetch” vulnerability.

Ssimilar to CVE-2016-6480.

CVE-2016-5829 buffer overflow in USB stack (HID)

Multiple heap-based buffer overflows in the hiddev_ioctl_usage function in driver-
s/hid/usbhid/hiddev.c in the Linux kernel through 4.6.3 allow local users to cause a denial
of service or possibly have unspecified other impact via a crafted (1) HIDIOCGUSAGES
or (2) HIDIOCSUSAGES ioctl call.

Buffer overflows in the USB stack. Genode uses the Linux USB stack as user-level
component. However, there is no way for any client to issue ioctl operations,
which would trigger the issue. The reach of the problem would be restricted to
the USB driver component regardless.

CVE-2016-5728 memory corruption in Intel manycore platform stack

Race condition in the vop_ioctl function in drivers/misc/mic/vop/vop_vringh.c in the MIC
VOP driver in the Linux kernel before 4.6.1 allows local users to obtain sensitive infor-
mation from kernel memory or cause a denial of service (memory corruption and system
crash) by changing a certain header, aka a “double fetch” vulnerability.

CVE-2016-5400 memory leak in USB SDR device driver

Memory leak in the airspy_probe function in drivers/media/usb/airspy/airspy.c in the air-
spy USB driver in the Linux kernel before 4.7 allows local users to cause a denial of service
(memory consumption) via a crafted USB device that emulates many VFL_TYPE_SDR
or VFL_TYPE_SUBDEV devices and performs many connect and disconnect operations.

Bug in a USB device driver for a software-defined radio device. On Genode, such
a driver would run as dedicated component using the USB-device session of the
USB driver component. The leaking memory would be accounted to the faulty
USB-device driver. Once its assigned quota is exhausted, it would block on a re-
source request. The remaining system including other USB device drivers would
remain unaffected.

55

4.3 Linux kernel

CVE-2016-5342 heap overflow in wireless driver

Heap-based buffer overflow in the wcnss_wlan_write function in drivers/net/wireless/wc-
nss/wcnss_wlan.c in the wcnss_wlan device driver for the Linux kernel 3.x, as used in
Qualcomm Innovation Center (QuIC) Android contributions for MSM devices and other
products, allows attackers to cause a denial of service or possibly have unspecified other
impact by writing to /dev/wcnss_wlan with an unexpected amount of data.

Heap overflow in wireless driver, triggered by an ioctl operation.

CVE-2016-4482 kernel-information leak in the USB core

The proc_connectinfo function in drivers/usb/core/devio.c in the Linux kernel through
4.6 does not initialize a certain data structure, which allows local users to obtain sensitive
information from kernel stack memory via a crafted USBDEVFS_CONNECTINFO ioctl
call.

Genode uses the Linux USB stack in a user-level component. The information
leaks over the ioctl interface, which is not exposed to clients of the USB stack.

CVE-2016-3955 buffer overflow in USB net

The usbip_recv_xbuff function in drivers/usb/usbip/usbip_common.c in the Linux kernel
before 4.5.3 allows remote attackers to cause a denial of service (out-of-bounds write) or
possibly have unspecified other impact via a crafted length value in a USB/IP packet.

Input validation issue in USB-networking code, resulting in a possible buffer
overflow.

CVE-2016-3951 unspecified impact via to double free in USB net

Double free vulnerability in drivers/net/usb/cdc_ncm.c in the Linux kernel before 4.5 al-
lows physically proximate attackers to cause a denial of service (system crash) or possibly
have unspecified other impact by inserting a USB device with an invalid USB descriptor.

The following CVEs show the same pattern where a null pointer is de-referenced in a
USB device driver, eventually resulting in a kernel crash.

CVE-2016-3689 null pointer in USB input (ims-pcu) driver

CVE-2016-3140 null pointer in USB serial driver

CVE-2016-3139 null pointer in USB Wacom tablet driver

CVE-2016-3138 null pointer in USB driver

CVE-2016-3137 null pointer in USB-serial driver

CVE-2016-3136 null pointer in USB-serial driver

CVE-2016-2782 null pointer in USB-serial driver

CVE-2016-2188 null pointer in USB iowarrior driver

56

4.3 Linux kernel

CVE-2016-2187 null pointer in USB tablet driver

CVE-2016-2186 null pointer in USB powermate driver

CVE-2016-2185 null pointer in USB ATI remote driver

CVE-2016-2184 null pointer in USB sound driver

CVE-2016-2384 double free in USB midi driver

Double free vulnerability in the snd_usbmidi_create function in sound/usb/midi.c in the
Linux kernel before 4.5 allows physically proximate attackers to cause a denial of service
(panic) or possibly have unspecified other impact via vectors involving an invalid USB
descriptor.

CVE-2016-2117 kernel-information leak in atheros network driver

The atl2_probe function in drivers/net/ethernet/atheros/atlx/atl2.c in the Linux kernel
through 4.5.2 incorrectly enables scatter/gather I/O, which allows remote attackers to ob-
tain sensitive information from kernel memory by reading packet data.

Allows an network-remote attacker to obtain kernel-internal data, caused by
wrong scatter/gather I/O handling. On Genode, the encapsulation of each driver
in a separate address space limits the leak to network data.

There is a huge batch of CVEs related to Qualcomm device drivers. Most of the vulner-
abilities may lead to privilege escalation.

CVE-2016-5344 memory corruption in Qualcomm video driver

CVE-2016-2068 buffer overflow in Qualcomm audio driver

CVE-2016-2067 buffer overflow in Qualcomm GPU driver

CVE-2016-2066 memory corruption in Qualcomm audio driver

CVE-2016-2065 kernel write by Qualcomm MSM driver

CVE-2016-2064 buffer over-read in Qualcomm MSM driver

CVE-2016-2063 buffer overflow in Qualcomm thermal driver

CVE-2016-2062 heap overflow in Qualcomm GPU driver

CVE-2016-2061 array overflow in Qualcomm Video4Linux support

CVE-2016-2059 missing permission check in MSM IPC router

CVE-2016-0723 use-after-free in TTY ioctl

Race condition in the tty_ioctl function in drivers/tty/tty_io.c in the Linux kernel through
4.4.1 allows local users to obtain sensitive information from kernel memory or cause a
denial of service (use-after-free and system crash) by making a TIOCGETD ioctl call
during processing of a TIOCSETD ioctl call.

57

4.3 Linux kernel

4.3.2 Logical errors and bugs in protocol stacks (networking, file systems,
audio)

Linux supports a large number of complex protocol stacks in the kernel. With protocol
stacks, we refer to code that translates software interfaces between different levels of
abstraction. E.g., a file system translates the notion of files and directories to the reading
and writing of blocks on a block device. Or a network stack translates the socket API
to network packets.

In contrast to device drivers that are usually exposed via a single pseudo device,
protocol stacks are exposed to the user space via diverse kernel interfaces that are much
less tangible than a single pseudo device. The interactions includes the handling of
network-protocol families or file-system operations (e. g., the complicated semantics of
hardlinks).

Protocol stacks may be exposed to the attackers from the “outside”. E.g., a USB stick
with a manipulated ISO 9660 file system may trigger bugs while parsing file-system
meta data (CVE-2016-4913), or the network stack may misinterpret packets (CVE-2016-
3707).

Within Genode, a protocol stack usually has the form of a library that is linked to
the component that uses the protocol stack. E.g., a TCP/IP stack is linked directly to
a networking application. If a network interface is shared by multiple applications, a
dedicated component multiplexes the network interface. The multiplexing can be real-
ized at different levels, e. g., below TCP/IP at network-packet level or above a TCP/IP
stack at the socket API level. Thereby the component-based architecture helps to pre-
vent complex protocol stacks to become central points of failure or prone to information
leakage.

File systems

CVE-2016-6516 denial of service, possible privilege escalation

Race condition in the ioctl_file_dedupe_range function in fs/ioctl.c in the Linux kernel
through 4.7 allows local users to cause a denial of service (heap-based buffer overflow) or
possibly gain privileges by changing a certain count value, aka a “double fetch” vulnera-
bility.

This is a potential heap overflow in the generic file-system code. On Genode,
there is no global VFS. The bug - if present - would remain local to the VFS-using
component. It would not put the kernel or the Genode base system at risk.

Kernel ASLR would be an effective countermeasure against the exploitation of
the bug on Linux.

CVE-2016-6197/6198 denial of service

The filesystem layer in the Linux kernel before 4.5.5 proceeds with post-rename opera-
tions after an OverlayFS file is renamed to a self-hardlink, which allows local users to
cause a denial of service (system crash) via a rename system call, related to fs/namei.c and
fs/open.c.

58

4.3 Linux kernel

fs/overlayfs/dir.c in the OverlayFS filesystem implementation in the Linux kernel before
4.6 does not properly verify the upper dentry before proceeding with unlink and rename
system-call processing, which allows local users to cause a denial of service (system crash)
via a rename system call that specifies a self-hardlink.

The CVE describes a bug in the VFS implementation with the interplay of
hardlinks and overlay fs. This problem does not exist on Genode. There is
no global VFS. The component-local VFS does not support hardlinks.

CVE-2016-4913 kernel-information leak

The get_rock_ridge_filename function in fs/isofs/rock.c in the Linux kernel before 4.5.5
mishandles NM (aka alternate name) entries containing 0 characters, which allows local
users to obtain sensitive information from kernel memory or possibly have unspecified
other impact via a crafted isofs filesystem.

The in-kernel ISO-file-system driver mishandles file-system meta data.

CVE-2016-4581 denial of service

fs/pnode.c in the Linux kernel before 4.5.4 does not properly traverse a mount propagation
tree in a certain case involving a slave mount, which allows local users to cause a denial of
service (NULL pointer dereference and OOPS) via a crafted series of mount system calls.

Bug in the traversal of file-system structures.

cve-2016-1575/1576/2853/2854 privilege escalation in overlayfs/aufs (union mounts)

The overlayfs implementation in the Linux kernel through 4.5.2 does not properly restrict
the mount namespace, which allows local users to gain privileges by mounting an over-
layfs filesystem on top of a FUSE filesystem, and then executing a crafted setuid program.

The overlayfs implementation in the Linux kernel through 4.5.2 does not properly main-
tain POSIX ACL xattr data, which allows local users to gain privileges by leveraging a
group-writable setgid directory.

The aufs module for the Linux kernel 3.x and 4.x does not properly restrict the mount
namespace, which allows local users to gain privileges by mounting an aufs filesystem on
top of a FUSE filesystem, and then executing a crafted setuid program.

The aufs module for the Linux kernel 3.x and 4.x does not properly maintain POSIX ACL
xattr data, which allows local users to gain privileges by leveraging a group-writable
setgid directory.

Exploit works by combining FUSE with user name spaces. Aufs propagates ex-
tended file attributes from the mounted FUSE file system as is, instead of sanitiz-
ing the attributes.

Genode’s VFS library has a stacked file-system concept similar to aufs. But it does
neither support nor use extended file attributes. In contrast to mandatory access
control frameworks on Linux, access control is not managed on a per-file (or per
inode) basis.

59

4.3 Linux kernel

Communication stacks

CVE-2016-6162

net/core/skbuff.c in the Linux kernel 4.7-rc6 allows local users to cause a denial of service
(panic) or possibly have unspecified other impact via certain IPv6 socket operations.

Details are missing in the CVE. The report describes a triggered assertion in the
network-handling code, which effectively halts the system.

CVE-2016-5696

net/ipv4/tcp_input.c in the Linux kernel before 4.7 does not properly determine the rate of
challenge ACK segments, which makes it easier for man-in-the-middle attackers to hijack
TCP sessions via a blind in-window attack.

This is a problem in the network-protocol implementation. Not affecting the ker-
nel, and unrelated to mitigation techniques.

CVE-2016-5243/5244 kernel-information leak

The tipc_nl_compat_link_dump function in net/tipc/netlink_compat.c in the Linux kernel
through 4.6.3 does not properly copy a certain string, which allows local users to obtain
sensitive information from kernel stack memory by reading a Netlink message.

The rds_inc_info_copy function in net/rds/recv.c in the Linux kernel through 4.6.3 does
not initialize a certain structure member, which allows remote attackers to obtain sensitive
information from kernel stack memory by reading an RDS message.

CVE-2016-4951 denial of service, unspecified other impact

The tipc_nl_publ_dump function in net/tipc/socket.c in the Linux kernel through 4.6 does
not verify socket existence, which allows local users to cause a denial of service (NULL
pointer dereference and system crash) or possibly have unspecified other impact via a
dumpit operation.

A user application can trigger a kernel crash caused by an unchecked de-referenced
pointer in the kernel’s “Transparent Inter-Process Communication protocol”.

CVE-2016-4805 denial of service, unspecified other impact

Use-after-free vulnerability in drivers/net/ppp/ppp_generic.c in the Linux kernel before
4.5.2 allows local users to cause a denial of service (memory corruption and system crash,
or spinlock) or possibly have unspecified other impact by removing a network namespace,
related to the ppp_register_net_channel and ppp_unregister_channel functions.

Dangling pointer issue, related to network name spaces.

CVE-2016-4580 kernel-information leak in X.25

The x25_negotiate_facilities function in net/x25/x25_facilities.c in the Linux kernel before
4.5.5 does not properly initialize a certain data structure, which allows attackers to obtain
sensitive information from kernel stack memory via an X.25 Call Request.

60

4.3 Linux kernel

The vulnerability has the common pattern of a missing initialization of a param-
eter structure.

CVE-2016-4565 possible kernel-memory write via InfiniBand stack

The InfiniBand (aka IB) stack in the Linux kernel before 4.5.3 incorrectly relies on the
write system call, which allows local users to cause a denial of service (kernel memory
write operation) or possibly have unspecified other impact via a uAPI interface.

CVE-2016-4485/4486 kernel-information leak in llc/rtnetlink subsystem

The llc_cmsg_rcv function in net/llc/af_llc.c in the Linux kernel before 4.5.5 does not
initialize a certain data structure, which allows attackers to obtain sensitive information
from kernel stack memory by reading a message.

The rtnl_fill_link_ifmap function in net/core/rtnetlink.c in the Linux kernel before 4.5.5
does not initialize a certain data structure, which allows local users to obtain sensitive
information from kernel stack memory by reading a Netlink message.

Improperly initialized parameter structures.

CVE-2016-3841 use-after-free in IPv6 stack

The IPv6 stack in the Linux kernel before 4.3.3 mishandles options data, which allows
local users to gain privileges or cause a denial of service (use-after-free and system crash)
via a crafted sendmsg system call.

CVE-2016-3707 privilege escalation

The icmp_check_sysrq function in net/ipv4/icmp.c in the kernel.org projects/rt patches for
the Linux kernel, as used in the kernel-rt package before 3.10.0-327.22.1 in Red Hat Enter-
prise Linux for Real Time 7 and other products, allows remote attackers to execute SysRq
commands via crafted ICMP Echo Request packets, as demonstrated by a brute-force at-
tack to discover a cookie, or an attack that occurs after reading the local icmp_echo_sysrq
file.

Genode’s user-level network stacks have no side effects like the sysrq operations
on Linux. Even when using the Linux-based LxIP stack on Genode, the vulnera-
bility would remain without any system-global effect.

CVE-2016-3156 denial of service in the networking stack

The IPv4 implementation in the Linux kernel before 4.5.2 mishandles destruction of device
objects, which allows guest OS users to cause a denial of service (host OS networking
outage) by arranging for a large number of IP addresses.

CVE-2016-2070 network-remote denial of service (div by 0 in TCP/IP stack)

The tcp_cwnd_reduction function in net/ipv4/tcp_input.c in the Linux kernel before 4.3.5
allows remote attackers to cause a denial of service (divide-by-zero error and system crash)
via crafted TCP traffic.

61

4.3 Linux kernel

CVE-2016-0758 privilege escalation (buffer overflow in ASN.1 protocol stack)

Integer overflow in lib/asn1_decoder.c in the Linux kernel before 4.6 allows local users to
gain privileges via crafted ASN.1 data.

Sound and video

CVE-2016-4568 possible kernel-memory write in Video4Linux subsystem

drivers/media/v4l2-core/videobuf2-v4l2.c in the Linux kernel before 4.5.3 allows local
users to cause a denial of service (kernel memory write operation) or possibly have un-
specified other impact via a crafted number of planes in a VIDIOC_DQBUF ioctl call.

There is a large batch of CVEs related to the sound system (ALSA). The vulnerabilities
can be triggered via ALSA’s ioctl interface. The potential damages are mostly de-
scribed as denial-of-service. However, use-after-free issues may have further reaching
effects.

CVE-2016-4569/4578 kernel-information leak in ALSA timer

CVE-2016-2549 deadlock in ALSA high-resolution timer

CVE-2016-2548 race during list manipulation in ALSA

CVE-2016-2547 use-after-free due to race in ALSA

CVE-2016-2546 use-after-free due to race in ALSA timer

CVE-2016-2545 race during list manipulation in ALSA timer

CVE-2016-2544 use-after-free caused race in ALSA sequencer

CVE-2016-2543 null pointer caused by race in ALSA sequencer

4.3.3 Bugs in the low-level parts of the kernel

The CVEs of this category are especially relevant for Genode because they are poten-
tially related to functionality that lies in the scope of the microkernel or Genode’s core
component.

CVE-2016-5828 denial of service, or unspecified other impact

The start_thread function in arch/powerpc/kernel/process.c in the Linux kernel through
4.6.3 on powerpc platforms mishandles transactional state, which allows local users to
cause a denial of service (invalid process state or TM Bad Thing exception, and system
crash) or possibly have unspecified other impact by starting and suspending a transaction
before an exec system call.

Power-PC-specific issue about the interplay of execve with transactional memory
- not further studied.

62

4.3 Linux kernel

CVE-2016-5412 denial of service

arch/powerpc/kvm/book3s_hv_rmhandlers.S in the Linux kernel through 4.7 on PowerPC
platforms, when CONFIG_KVM_BOOK3S_64_HV is enabled, allows guest OS users to
cause a denial of service (host OS infinite loop) by making a H_CEDE hypercall during
the existence of a suspended transaction.

Power-PC issue related to the interplay of virtualization and transactional mem-
ory - not further studied.

CVE-2016-5340 privilege escalation

The is_ashmem_file function in drivers/staging/android/ashmem.c in a certain Qualcomm
Innovation Center (QuIC) Android patch for the Linux kernel 3.x mishandles pointer
validation within the KGSL Linux Graphics Module, which allows attackers to bypass
intended access restrictions by using the /ashmem string as the dentry name.

Input validation problem in “Android shared memory” implementation, com-
paring pointed-to strings instead of pointer values. Mitigation measures would
remain without effect.

CVE-2016-4794 use-after-free with unspecified other impact

Use-after-free vulnerability in mm/percpu.c in the Linux kernel through 4.6 allows local
users to cause a denial of service (BUG) or possibly have unspecified other impact via
crafted use of the mmap and bpf system calls.

Apparently this is a potential memory corruption caused by a race condition (if
the “extension” of memory mappings races with the destruction of chunks). The
CVE is too light on details to get a good picture.

This bug is in the inner part of the kernel’s memory management. In Genode,
the corresponding functionality resides within Genode’s core component. Core
has to deal with the problem of synchronizing the destruction of memory ob-
jects or memory mappings with the page-fault handling, which - depending on
the used kernel - may have similar issues.

CVE-2016-4440 privilege escalation in KVM

arch/x86/kvm/vmx.c in the Linux kernel through 4.6.3 mishandles the APICv on/off state,
which allows guest OS users to obtain direct APIC MSR access on the host OS, and
consequently cause a denial of service (host OS crash) or possibly execute arbitrary code
on the host OS, via x2APIC mode.

Currently, VMs on Genode/NOVA do not support the virtualization of x2APIC.
After a brief review, it remains unclear whether the vulnerable code would reside
in the untrusted user-level VMM or in the NOVA hypervisor.

CVE-2016-3961 denial of service

Xen and the Linux kernel through 4.5.x do not properly suppress hugetlbfs support in
x86 PV guests, which allows local PV guest OS users to cause a denial of service (guest
OS crash) by attempting to access a hugetlbfs mapped area.

63

4.3 Linux kernel

Linux as a guest OSes crashes because it expects the presence of a feature (2 MiB
mappings) that is unexpectedly not supported by the Xen hypervisor. The prob-
lem remains local to the guest.

CVE-2016-3713 denial of service, information leak in KVM subsystem

The msr_mtrr_valid function in arch/x86/kvm/mtrr.c in the Linux kernel before 4.6.1
supports MSR 0x2f8, which allows guest OS users to read or write to the kvm_arch_vcpu
data structure, and consequently obtain sensitive information or cause a denial of service
(system crash), via a crafted ioctl call.

CVE-2016-3157 denial of service

The __switch_to function in arch/x86/kernel/process_64.c in the Linux kernel does not
properly context-switch IOPL on 64-bit PV Xen guests, which allows local guest OS
users to gain privileges, cause a denial of service (guest OS crash), or obtain sensitive
information by leveraging I/O port access.

This is a bug in the context-switching code in Linux that is specific to Xen PV
guests. User applications can crash their underlying kernel. Other Xen guests
remain unaffected.

CVE-2016-3070 denial of service (null pointer in memory management)

The trace_writeback_dirty_page implementation in include/trace/events/writeback.h in
the Linux kernel before 4.4 improperly interacts with mm/migrate.c, which allows local
users to cause a denial of service (NULL pointer dereference and system crash) or possibly
have unspecified other impact by triggering a certain page move.

CVE-2016-2847 resource denial of service by using pipes

fs/pipe.c in the Linux kernel before 4.5 does not limit the amount of unread data in pipes,
which allows local users to cause a denial of service (memory consumption) by creating
many pipes with non-default sizes.

On Genode, there is no pipe-like inter-process mechanism that consumes unac-
counted kernel resources on behalf of user programs.

CVE-2016-2550 resource denial-of-service via file descriptor allocation

The Linux kernel before 4.5 allows local users to bypass file-descriptor limits and cause
a denial of service (memory consumption) by leveraging incorrect tracking of descriptor
ownership and sending each descriptor over a UNIX socket before closing it. NOTE: this
vulnerability exists because of an incorrect fix for CVE-2013-4312.

CVE-2016-2143 unspecified impact in page-table handling on s390 platforms

The fork implementation in the Linux kernel before 4.5 on s390 platforms mishandles
the case of four page-table levels, which allows local users to cause a denial of service
(system crash) or possibly have unspecified other impact via a crafted application, related
to arch/s390/include/asm/mmu_context.h and arch/s390/include/asm/pgalloc.h.

64

4.3 Linux kernel

CVE-2016-2069 possible privilege escalation (race in TLB flush)

Race condition in arch/x86/mm/tlb.c in the Linux kernel before 4.4.1 allows local users to
gain privileges by triggering access to a paging structure by a different CPU.

The result of this race could be a stale mapping present in the TLB, for which no
page-table entry exist any longer.

It might be worthwhile to check how the scenario explained in the CVE would
relate to the TLB shoot-down protocols implemented by the base-hw and
NOVA kernels.

CVE-2016-1583 privileged escalation (ecryptfs causing recursive page faults)

The ecryptfs_privileged_open function in fs/ecryptfs/kthread.c in the Linux kernel before
4.6.3 allows local users to gain privileges or cause a denial of service (stack memory con-
sumption) via vectors involving crafted mmap calls for /proc pathnames, leading to recur-
sive pagefault handling.

An attacker can deliberately trigger recursive page-fault resolution in the kernel,
eventually overflowing the kernel stack. The stack flows into an adjacent page,
which may be under user control.

This problem does not exist on Genode. Even though NOVA triggers page-faults
in the kernel as an optimization to implement a sparse data structure (capabil-
ity space) such in-kernel page faults are never triggered recursively. Genode’s
custom base-hw kernel never triggers any page faults in the kernel.

CVE-2016-0823 kernel-information leak by reading pagemap file

The pagemap_open function in fs/proc/task_mmu.c in the Linux kernel before 3.19.3, as
used in Android 6.0.1 before 2016-03-01, allows local users to obtain sensitive physical-
address information by reading a pagemap file, aka Android internal bug 25739721.

There is no such mechanism on Genode.

CVE-2016-0774 privilege escalation (pipe read/write)

The (1) pipe_read and (2) pipe_write implementations in fs/pipe.c in a certain Linux ker-
nel backport in the linux package before 3.2.73-2+deb7u3 on Debian wheezy and the kernel
package before 3.10.0-229.26.2 on Red Hat Enterprise Linux (RHEL) 7.1 do not properly
consider the side effects of failed __copy_to_user_inatomic and __copy_from_user_inatomic
calls, which allows local users to cause a denial of service (system crash) or possibly gain
privileges via a crafted application, aka an “I/O vector array overrun.” NOTE: this
vulnerability exists because of an incorrect fix for CVE-2015-1805.

The problem lies in the iterative copying of data via “iov” structures where the
number of already copied bytes was not tracked correctly.

65

4.3 Linux kernel

4.3.4 Vulnerabilities in security-related functions

This category of CVEs highlights the problem that security “features” may introduce
critical vulnerabilities due to their complex implementation. In particular the introduc-
tion of user name spaces and network name spaces as motivated by the use of con-
tainers stand out because they are repeatedly mentioned in several CVEs. There are 3
CVEs regarding the Berkeley Packet Filter (BPF), which is the base mechanism of the
seccomp-bpf sandboxing mechanism.

CVE-2016-6187 privilege escalation

The apparmor_setprocattr function in security/apparmor/lsm.c in the Linux kernel be-
fore 4.6.5 does not validate the buffer size, which allows local users to gain privileges by
triggering an AppArmor setprocattr hook.

Buffer overflow in AppArmor API function.

CVE-2016-6136 audit-log integrity issue

Race condition in the audit_log_single_execve_arg function in kernel/auditsc.c in the
Linux kernel through 4.7 allows local users to bypass intended character-set restrictions
or disrupt system-call auditing by changing a certain string, aka a “double fetch” vulner-
ability.

This is a double-fetch issue during process creation (execve), possibly affecting
the content of audit logs.

CVE-2016-4997/4998 denial of service, kernel information leak

The compat IPT_SO_SET_REPLACE setsockopt implementation in the netfilter subsys-
tem in the Linux kernel before 4.6.3 allows local users to gain privileges or cause a denial
of service (memory corruption) by leveraging in-container root access to provide a crafted
offset value that triggers an unintended decrement.

The IPT_SO_SET_REPLACE setsockopt implementation in the netfilter subsystem in
the Linux kernel before 4.6 allows local users to cause a denial of service (out-of-bounds
read) or possibly obtain sensitive information from kernel heap memory by leveraging in-
container root access to provide a crafted offset value that leads to crossing a ruleset blob
boundary.

Vulnerability was introduced with network namespaces, may be triggered from
the inside of containers.

CVE-2016-4558 refcount overflow in Berkeley Packet Filter

The BPF subsystem in the Linux kernel before 4.5.5 mishandles reference counts, which
allows local users to cause a denial of service (use-after-free) or possibly have unspecified
other impact via a crafted application on (1) a system with more than 32 Gb of memory,
related to the program reference count or (2) a 1 Tb system, related to the map reference
count.

66

4.3 Linux kernel

CVE-2016-4557 privilege escalation via use-after-free bug in BPF

The replace_map_fd_with_map_ptr function in kernel/bpf/verifier.c in the Linux kernel
before 4.5.5 does not properly maintain an fd data structure, which allows local users to
gain privileges or cause a denial of service (use-after-free) via crafted BPF INSTRUC-
TIons that reference an incorrect file descriptor.

Related to https://bugs.chromium.org/p/project-zero/issues/detail?
id=808

CVE-2016-4470 use-after-free issue in Kernel keyring handling

The key_reject_and_link function in security/keys/key.c in the Linux kernel through 4.6.3
does not ensure that a certain data structure is initialized, which allows local users to
cause a denial of service (system crash) via vectors involving a crafted keyctl request2
command.

CVE-2016-3672 information leak bypassing ASLR

The arch_pick_mmap_layout function in arch/x86/mm/mmap.c in the Linux kernel
through 4.5.2 does not properly randomize the legacy base address, which makes it easier
for local users to defeat the intended restrictions on the ADDR_NO_RANDOMIZE flag,
and bypass the ASLR protection mechanism for a setuid or setgid program, by disabling
stack-consumption resource limits.

CVE-2016-3134/3135 privilege escalation (kernel write)

The netfilter subsystem in the Linux kernel through 4.5.2 does not validate certain offset
fields, which allows local users to gain privileges or cause a denial of service (heap memory
corruption) via an IPT_SO_SET_REPLACE setsockopt call.

Integer overflow in the xt_alloc_table_info function in net/netfilter/x_tables.c in the Linux
kernel through 4.5.2 on 32-bit platforms allows local users to gain privileges or cause a
denial of service (heap memory corruption) via an IPT_SO_SET_REPLACE setsockopt
call.

The vulnerability is present only when network namespaces are enabled.

CVE-2016-2383 kernel-information leak via Berkeley Packet Filter

The adjust_branches function in kernel/bpf/verifier.c in the Linux kernel before 4.5 does
not consider the delta in the backward-jump case, which allows local users to obtain sen-
sitive information from kernel memory by creating a packet filter and then loading crafted
BPF instructions.

CVE-2016-2085 timing side channel

The evm_verify_hmac function in security/integrity/evm/evm_main.c in the Linux kernel
before 4.5 does not properly copy data, which makes it easier for local users to forge MAC
values via a timing side-channel attack.

67

https://bugs.chromium.org/p/project-zero/issues/detail?id=808
https://bugs.chromium.org/p/project-zero/issues/detail?id=808

4.4 Lessons learned from the reviewed CVEs

CVE-2016-2053 denial of service (missing input validation in crypto function)

The asn1_ber_decoder function in lib/asn1_decoder.c in the Linux kernel before 4.3 allows
attackers to cause a denial of service (panic) via an ASN.1 BER file that lacks a public key,
leading to mishandling by the public_key_verify_signature function in crypto/asymmet-
ric_keys/public_key.c.

CVE-2016-0821 ineffective list-pointer poisoning

The LIST_POISON feature in include/linux/poison.h in the Linux kernel before 4.3, as
used in Android 6.0.1 before 2016-03-01, does not properly consider the relationship to
the mmap_min_addr value, which makes it easier for attackers to bypass a poison-pointer
protection mechanism by triggering the use of an uninitialized list entry, aka Android
internal bug 26186802, a different vulnerability than CVE-2015-3636.

Poisoning is the approach to overwrite freed pointers with a pattern that yields an
unresolvable page fault at a well-known address such that the de-referencing of
dangling pointers can easily be detected (in contrast of overwriting such pointers
with a null pointer).

CVE-2016-0728 privilege escalation (integer overflow in kernel keyring)

The join_session_keyring function in security/keys/process_keys.c in the Linux kernel be-
fore 4.4.1 mishandles object references in a certain error case, which allows local users to
gain privileges or cause a denial of service (integer overflow and use-after-free) via crafted
keyctl commands.

4.4 Lessons learned from the reviewed CVEs

Device drivers are most vulnerable

The biggest share of vulnerabilities is present in device drivers, which highlights
the benefit of component-based OS architectures. On Linux, each of those vul-
nerabilities affect the entire system (i. e., via a kernel crash) whereas the same
code running encapsulated in a Genode component has far less dramatic conse-
quences.

Most device-driver vulnerabilities are triggered by ioctl operations or a certain
device behavior. The ioctl attack surface can be effectively reduced by restricting
user-level access to devices via mandatory access control frameworks or seccomp.

TCB reduction of Genode’s virtualization architecture is effective

As seen in the Xen-related CVEs, bugs in the complex instruction emulator com-
promise not merely a single VM but the entire system. Thanks to the micro-
kernel approach to virtualization as facilitated by running VirtualBox on Gen-
ode/NOVA, critical virtualization-related bugs remain isolated in the untrusted
user-level VMM component. The underlying microkernel that establishes the iso-
lation boundaries between components (such as VMs) is relieved from such com-
plexities.

68

4.4 Lessons learned from the reviewed CVEs

Recurring patterns of information leakage

Most information leaks have the same underlying cause, which lies in improperly
initialized parameter structures. The same principle problem exists on Genode,
where components communicate structured data as RPC arguments or via shared
memory.

Complexity defeats security

Due to their complexity, some mitigation techniques like seccomp-bpf introduce
new vulnerabilities as illustrated by the critical bugs found in the Berkeley packet
filter. The same observation holds for user-level security features such as net-
work name spaces or user name spaces, which actually introduced new privilege-
escalation problems. Xen’s support for paravirtualized guests also nicely illus-
trate this point. The complexities that come with the PV page-table handling and
the related optimizations obviously have a price in terms of security.

Mitigation measures turn security disasters into denial-of-service issues

There exists a large number of write-to-kernel, use-after-free, double-free, or
buffer-overflow issues. In most cases, the reported consequences are denial-of-
service problems. Mitigation measures like kernel ASLR seemingly raise the bar
for exploiting those vulnerabilities.

Even time-tested functionalities are not immune

• Bugs in the kernel’s memory management

• Buffer overflow in the implementation of pipes

• Vulnerabilities present in the generic VFS code

Estimating the reach of a vulnerability often remains impossible

Many CVEs state “unspecified other impact” because the reach of vulnerabilities
is impossible to predict in a monolithic architecture. E.g., bugs in the handling of
ICMP network packets may result in a remote attacker issuing sysrq operations.
In contrast, a component-based system eases the assessment of the consequences:
By assuming a component to be under total control of an attacker, all interactions
of the given component with other components can be examined and discussed
in detail.

69

5 Improving the resilience of Genode

This section proposes possible steps to improve the resilience of Genode against attacks.
For most of the proposed improvements, automated tests should be able to confirm
their effectiveness.

5.1 Address known limitations / uncover unknown limitations

The primary focus should be the elimination of known problems and the systematic
analysis of the existing design and code with respect to possible vulnerabilities. An
example of a known problem is the unrestricted capability allocation as described in
Section 2.1.

Supplementing the current suite of functional tests by systematic bad-case API tests
would reveal unknown deficiencies that could be subsequently addressed. The design
of bad-case tests could be aided by reviewing the code, paying special attention to bug-
prone patterns like the use of pointers, dynamic memory allocations, locking, the use
of variable-sized buffers, or for loops with indices.

5.2 Infrastructure for random-based mitigation techniques

Several mitigation techniques rely on the availability of an entropy source. In the con-
text of Genode, this raises the following problems:

• We need a sufficiently good but low-complexity random-number generator
(PRNG) that can be easily embedded into various parts of the Genode system.

• We need to find a seed for the PRNG in Genode’s core component from a random
source at boot time (and possibly later).

• We need to find a good way to propagate entropy throughout Genode’s compo-
nent tree. This entropy may be used to seed component-local PRNGs.

• We need to equip low-level data structures like a AVL-based best-fit allocator, the
bit allocator, and the heap with new interfaces for incorporating randomness.

5.3 Tool-chain-based protections

Protection mechanisms provided by the current version of Genode’s tool chain (based
on GCC 4.9.2) could be enabled by default.

• The stack-smashing protection mechanism as discussed in Section 3.1 would ob-
tain its random canary value via the infrastructure proposed in the previous sec-
tion.

• Fortify source could be enabled for the compilation of libc-based components.

70

5.4 MMU-based protection mechanisms

5.4 MMU-based protection mechanisms

The MMU protections explained in Section 3.6 should be implemented:

Data-execution prevention (DEP)

• Support for NX-bit handling in core, NOVA, and the base-hw kernel

• Distinguishing RX and RO segments in Genode’s ELF binaries (right now,
RO sections and code are located in a single segment)

Separating attached dataspaces by guard pages

As discussed in Section 3.3.5, guard pages help to mitigate heap-buffer overflow
attacks.

Improvement of RAM vs. ROM dataspace handling

• Sealing RAM dataspaces to become read-only as proposed in Section 3.6.1.

• Possibly sealing a PD to disallow further executable mappings, thereby pre-
venting the smuggling of new code into the running program,

• Allow RAM dataspace to be defensively attached as read-only mappings.

Dynamic linker

• Use eager binding (aka “bind-now”) of the PLT and read-only jump-slot re-
locations by default,

• Lazy binding: using a random-located r/w shadow mapping for editing the
PLT, while using a r/o mapping for the actual use by the application

5.5 Mitigating cold-boot attacks

By applying the clearing of dataspaces and heap allocations as discussed in Section
2.2.4, Genode would simplify the defense against cold-boot attacks. E.g., a developer
of a component that processes sensitive information would not need to manually clear
credentials from memory but would simply destroy the component or free the buffer
that was tainted with sensitive information.

5.6 Address-space randomization

The various ideas presented in Section 3.4 could be implemented based on the infras-
tructure outlined in Section 5.2.

5.7 ELF-binary randomization

The implementation of the ELF-binary randomization idea as presented in Section 3.4.8
would effectively eliminate ROP-based attacks. The approach could be applied at two
stages:

71

5.8 Heap protection

• At the bootstrapping of the kernel/core, the bootstrapping code could shuffle all
ELF binaries that are present as boot modules.

• A ROM service component could transparently apply the shuffling of ELF images
that are obtained by other (higher-level components) as ROM modules.

Note that this approach is not a proven path. So there are practical risks such as the
complexity of the architecture-specific instruction decoding and the rewriting of jump
targets (considering the constraints of PC-relative addressing). However, if successful,
this technique would advance Genode’s resilience far beyond the state of the art of
mitigation techniques.

5.8 Heap protection

Implementation of the ideas presented in Section 3.3.5.

5.9 Tools for hardening the implementation

To further reduce the likelihood for the first stage of privilege escalation attacks and
thereby to support the presumption that the kernel/core is not attackable, we would
devise the creation of new tools that statically analyse Genode’s code base. The analy-
sis will aid the hardening of the implementation with respect to typical bugs. The tools
should become a regular part of Genode’s continuous test-and-integration infrastruc-
ture to make sure that the quality of the code does not degrade in the future. In the
longer term, the effort could be cultivated towards the selective application of formal
methods and model-checking techniques to the framework’s most central code.

Examples of properties to maintain via static analysing tools are:

• Compile-time prevention of information leaks via RPC arguments as described in
Section 3.10.2,

• Revealing undocumented object ownership issues by enforcing annotations of
reference arguments,

• Uncovering memory leaks by enforcing an annotation at the allocation site that
explains where/how the object is freed,

• Detecting possible integer overflows (e. g., asserting the absence of shift operators
from the code base)

• Banning of pointer arithmetics except for a few well-documented places,

• Detection of possible out-of-bounds array accesses (possibly banning C-style ar-
rays from the code of regular components),

• Detecting unbounded recursion,

• Spotting argument-validation issues

72

	Introduction
	Motivation behind mitigation techniques
	Compartments and structural resilience
	Pros and cons
	Document structure

	Taxonomy of attacks
	Denial of service
	Information gathering
	Format-string attacks
	Information-leaking error messages
	Leaky parameter structures
	Cold-boot attacks

	Privilege escalation
	Seizing control over a foreign program
	``Shellcode'' injection
	Return-oriented programming (ROP)
	Stack Pivoting

	Exploitation

	Mitigation techniques
	Stack-smashing protection
	Function selection
	Canary-value protection
	Limitations
	Enabling SSP on Genode

	Pointer obfuscation
	Heap-overflow detection / heap protection
	Integrity checks of the heap's metadata
	Randomization of heap allocations
	Guard pages between heap chunks
	Cookies at the bounds of heap blocks
	Protecting the heap on Genode

	Address-space layout randomization (ASLR)
	Randomizing library load addresses
	Randomizing executable load addresses
	Randomized stack locations
	Randomization of memory mappings
	Randomizing the addresses of the heap chunks / the BRK boundary
	VDSO randomization
	Kernel address-space layout randomization
	ELF layout randomization
	Further opportunities to apply ASLR to Genode

	Fortify source
	MMU mechanisms
	Data Execution Prevention (DEP)
	Supervisor Mode Access/Execution Protection (SMAP and SMEP)
	0-address protection

	Seccomp
	POSIX capabilities
	Mandatory Access Control (MAC)
	Information leakage prevention
	/proc/$pid/maps protection
	Stack leakage in the padding in API data structures
	Kernel Address Display Restriction and dmesg restrictions

	Diminishing the attack surface
	Hardlink restrictions
	ptrace scope
	/dev/mem protection
	Disabling /dev/kmem
	Block module loading and kexec
	Blacklisting of rare protocols

	Further mitigation mechanisms on non-Linux OSes
	Pledges (OpenBSD)
	Host-based intrusion detection (HIDS)
	Microsoft EMET defense against ROP attacks

	Review of recent CVEs
	Typical kinds of vulnerabilities
	Double-fetch issues
	Kernel-information leaks via parameter structures
	Dereferenced null pointers or dangling pointers

	Xen hypervisor
	Linux kernel
	Bugs in device drivers
	Logical errors and bugs in protocol stacks (networking, file systems, audio)
	Bugs in the low-level parts of the kernel
	Vulnerabilities in security-related functions

	Lessons learned from the reviewed CVEs

	Improving the resilience of Genode
	Address known limitations / uncover unknown limitations
	Infrastructure for random-based mitigation techniques
	Tool-chain-based protections
	MMU-based protection mechanisms
	Mitigating cold-boot attacks
	Address-space randomization
	ELF-binary randomization
	Heap protection
	Tools for hardening the implementation

