
 
 
 Introduction

  
   We are surrounded by operating systems.
   Each device where multiple software functions are consolidated on a single
   CPU employs some sort of operating system that multiplexes the physical
   CPU for the different functions.
   In our age when even mundane household items get connected to the internet,
   it becomes increasingly hard to find devices where this is not the case.
  

  
   Our lives and our society depend on an increasing number of such devices.
   We have to trust them to fulfill their advertised functionality and
   to not perform actions that are against our interests. But are those devices
   trustworthy? In most cases, nobody knows that for sure. Even the device
   vendors are unable to guarantee the absence of vulnerabilities or hidden
   functions. This is not by malice. The employed commodity software stacks are
   simply too complex to reason about them.
   Software is universally known to be not perfect.
   So we have seemingly come to accept the common practice where vendors
   provide a stream of software and firmware updates that fix
   vulnerabilities once they become publicly known.
   Building moderately complex systems that are free from such issues appears to be
   unrealistic.
   Why is that?
  

  
  
  Universal truths

   
    The past decades have provided us with enough empirical evidence about
    the need to be pragmatic about operating-system software.
    For example,
    high-assurance systems are known to be expensive and struggle to scale.
    Consequently, under cost pressure, we can live without high assurance.
    Security is considered as important. But at the point where the user gets
    bothered by it, we have to be willing to compromise. Most users would agree that
    guaranteed quality of service is desirable. But to attain good utilization
    of cheap hardware, we have to sacrifice such guarantees.
    Those universal truths have formed our expectations of commodity
    operating system software.
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    In markets where vendors are held liable for the correctness of their
    products, physical separation provides the highest assurance for the
    independence and protection of different functions from each other.
    For example, cars contain dozens of electronic control units (ECU) that
    can be individually evaluated and certified. However, cost considerations
    call for the consolidation of multiple functions on a single ECU.
    At this point, separation kernels are considered to partition the
    hardware resources into isolated compartments. Because the isolation is
    only as strong as the correctness of the isolation kernel, such kernels
    must undergo a thorough evaluation. In the face of being liable,
    an oversight during the evaluation may have disastrous consequences for the
    vendor. Each line of code to be evaluated is an expense. Hence, separation
    kernels are minimized to the lowest possible complexity - up to only a
    few thousand lines of code.
   

   
    The low complexity of separation kernels comes at the cost of being
    inflexible. Because the hardware resources are partitioned at
    system-integration time,
    dynamic workloads are hard to accommodate. The rigidity of the approach
    stands in the way whenever the number of partitions, the assignment of
    resources to partitions, and the software running in the partitions have to be
    changed at runtime.
   

   
    Even though the high level of assurance as provided by separation kernels is
    generally desirable, flexibility and the support for dynamic workloads is even
    more so. For this reason, commodity general-purpose OSes find their way into
    all kinds of devices except into those where vendors are held liable for the
    correctness of their products.
    The former include not only household appliances, network gear, consumer
    electronics, mobile devices, and certain comfort functions in vehicles but
    also the IT equipment of governments, smart-city appliances, and surveillance
    systems.
    To innovate quickly, vendors accept to make their products reliant
    on highly complex OS foundations. The trusted computing base (TCB) of all
    commodity general-purpose operating systems is measured in millions of
    lines of code. It comprises all the software components that must be trusted
    to not violate the interests of the user. This includes the kernel, the
    software executed at the system start, all background services with system
    privileges, and the actual application software.
    In contrast to separation kernels, any attempt to assess the correct functioning
    of the involved code is shallow at best. The trustworthiness of such a
    system remains uncertain to vendors and users alike.
    The uncertainty that comes with the staggering TCB complexity becomes a
    problem when such systems get connected to the internet:
    Is my internet router under control of a bot net? Is my mobile phone remotely
    manipulated to wiretap me? Is my TV spying on me when switched off? Are
    my sensitive documents stored on my computer prone to leakage?
    Faithfully, we hope the answers to those question to be no. But because
    it is impossible to reason about the trusted computing base of the employed
    operating systems, there are no answers.
   

   
    Apparently, the lack of assurance must be the price to pay for the
    accommodation of feature-rich dynamic workloads.
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    The ease of use of software systems is often perceived as diametrical to
    security. There are countless mundane examples: Remembering passwords
    of sufficient strength is annoying. Even more so is picking a dedicated
    password for each different purpose. Hence, users tend to become lax about
    choosing and updating passwords. Another example is OpenPGP. Because setting
    it up for secure email communication is perceived as complicated,
    business-sensitive information is routinely exchanged unencrypted. Yet another
    example is the lack of adoption of the security frameworks such as SELinux.
    Even though they are readily available on commodity OS distributions,
    comprehending and defining security policies is considered as a black art,
    which is better left to experts.
   

   
    How should an operating system strike the balance between being unusably
    secure and user-friendly insecure?
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    Current-generation general-purpose OSes are designed to utilize physical
    resources like memory, network bandwidth, computation time, and power in the
    best way possible. The common approach to maximize utilization is the
    over-provisioning of resources to processes. The OS kernel
    pretends the availability of an unlimited amount of resources
    to each process in the hope that processes will attempt to allocate and
    utilize as much resources as possible. Its holistic view on all processes
    and physical resources
    puts the kernel in the ideal position to balance resources between processes.
    For example, if physical memory becomes scarce, the kernel is able to uphold
    the illusion of unlimited memory by temporarily swapping the memory content of
    inactive processes to disk.
   

   
    However, the optimization for high utilization comes at the price of
    indeterminism and effectively makes modern commodity OSes defenseless
    against denial-of-service attacks driven by applications.
    For example, because the network load is not accounted to individual
    network-using applications, a misbehaving network-heavy application is able
    to degrade the performance of other network applications. As another
    example, any GUI application is able to indirectly cause a huge memory
    consumption at the GUI server by creating an infinite amount of windows. If
    the system eventually runs out of memory, the kernel will identify the GUI
    server as the offender.
   

   
    With the help of complex heuristics like process-behaviour-aware schedulers,
    the kernel tries hard to uphold the illusion of unlimited resources when
    under pressure. But since the physical resources are ultimately limited, this
    abstraction is destined to break sooner or later. If it breaks, the
    consequences may be fatal: In an out-of-memory situation, the last resort
    of the kernel is to rampage and kill arbitrary processes.
   

   
    Can an operating system achieve high resource utilization while still being
    dependable?
   

  
  
  Clean-slate approach

   
    Surprisingly, by disregarding the practical considerations of existing
    commodity operating systems, the contradictions outlined above can be
    resolved by a combination of the following key techniques:
   

   
    	Microkernels

    	
     
      as a middle ground between separation kernels and
      monolithic kernels are able to accommodate dynamic workloads without
      unreasonably inflating the trusting computing base.
     

    

    	Capability-based security

    	
     
      supposedly makes security easy to use by
      providing an intuitive way to manage authority without the need for
      an all-encompassing and complex global system policy.
     

    

    	Kernelization

    	
     
      of software components aids the deconstruction of
      complex software into low-complexity security-sensitive parts and
      high-complexity parts. The latter no longer need to be considered
      as part of the trusted computing base.
     

    

    	Virtualization

    	
     
      can bridge the gap between applications that expect
      current-generation OSes and a new operating-system design.
     

    

    	The management of budgets

    	
     
      within hierarchical organizations shows how
      limited resources can be utilized and still be properly accounted for.
     

    

   


   
    None of those techniques is new by any means. However, they have never
    been used as a composition of a general-purpose operating system. This
    is where Genode comes into the picture.
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      Application-specific trusted computing base

   


  
  
  Application-specific trusted computing base

   
    A Genode system is structured as a tree of components where each component
    (except for the root of the tree) is owned by its parent. The notion of
    ownership means both responsibility and control. Being responsible for
    its children, the parent has to explicitly provide the resources needed by
    its children out of its own resources. It is also responsible to acquaint
    children with one another and the outside world. In
    return, the parent retains ultimate control over each of its children. As the
    owner of a child, it has ultimate power over the child's environment, the
    child's view of the system, and the lifetime of the child.
    Each child can, in turn, have children, which yields a recursive system
    structure. Figure img/app_specific_tcb illustrates the idea.
   

   
    At the root of the tree, there is a low-complexity microkernel that is
    always part of the TCB. The kernel is solely responsible to provide
    protection domains, threads of execution, and the controlled communication
    between protection domains. All other system functions such as device drivers,
    network stacks, file systems, runtime environments, virtual machines,
    security functions, and resource multiplexers are realized as components
    within the tree.
   

   
    The rigid organizational structure enables the system designer to
    tailor the trusted computing base for each component individually. For
    example, by hosting a cryptographic function nearby the root of the tree,
    the function is exposed only to the microkernel but not to complex drivers
    and protocol stacks that may exist in other branches of the tree. Figure
    img/app_specific_tcb illustrates the TCB of one leaf node. The TCB of the
    yellow component comprises the chain of parents and grandparents because it is
    directly or indirectly owned by them. Furthermore, the TCB comprises a
    service used by the component. But the right branch of tree is
    unrelated to the component and can thereby disregarded from the yellow
    component's TCB.
   

  
  
  Trading and tracking of physical resources

   
    Unlike traditional operating systems, Genode does not abstract from physical
    resources. Instead, each component has a budget of physical resources
    assigned by its parent. The budget allows the component to use the
    resources within the budget or to assign parts of its budget to its children.
    The usage and assignment of budgets is a deliberative decision by each
    component rather than a global policy of the OS kernel.
    Components are able to trade resource budgets along the branches
    of the tree. This way, components can offer services to other components
    without consuming their own resources. The dynamic trading of resource
    budgets between components allows for a high resource utilization without
    the over-provisioning of resources. Consequently, the system behavior
    remains deterministic at all times.
   

  
  
  Operating-system framework

   
    The Genode OS framework is the implementation of the Genode architecture.
    It is a tool kit for building highly secure
    special-purpose operating systems. It scales from embedded systems with as
    little as 4 MB of memory to highly dynamic general-purpose workloads.
   

   
    The system is based on a recursive structure. Each program is executed in a
    dedicated sandbox and gets granted only those access rights and resources that
    are required to fulfill its specific purpose. Programs can create and manage
    sub-sandboxes out of their own resources, thereby forming hierarchies where
    policies can be applied at each level. The framework provides mechanisms to
    let programs communicate with each other and trade their resources, but only
    in strictly-defined manners. Thanks to this rigid regime, the attack surface
    of security-critical functions can be reduced by orders of magnitude compared
    to contemporary operating systems.
   

   
    The framework aligns the construction principles of microkernels with Unix
    philosophy.
    In line with Unix philosophy, Genode is a collection of small building blocks,
    out of which sophisticated systems can be composed. But unlike Unix, those
    building blocks include not only applications but also all classical OS
    functionalities including kernels, device drivers, file systems, and protocol
    stacks.
   

   
    	CPU architectures

    	
     
      Genode supports the x86 (32 and 64 bit), ARM (32 bit), and RISC-V (64 bit)
      CPU architectures.
      On x86, modern architectural features such as IOMMUs and
      hardware virtualization can be utilized.
      On ARM, Genode is able to take advantage of TrustZone and virtualization
      technology.
     

    

    	Kernels

    	
     
      Genode can be deployed on a variety of different kernels including
      most members of the L4 family (NOVA, seL4, Fiasco.OC, OKL4 v2.1,
      L4ka::Pistachio, L4/Fiasco).
      Furthermore, it can be used on top of the Linux kernel to attain
      rapid development-test cycles during development.
      Additionally, the framework is accompanied with a custom microkernel that has
      been specifically developed for Genode and thereby further reduces the
      complexity of the trusted computing base compared to other kernels.
     

    

    	Virtualization

    	
     
      Genode supports virtualization at different levels:
     

     
      	
       
        On NOVA, faithful virtualization via VirtualBox allows the execution of
        unmodified guest operating systems as Genode subsystems. Alternatively,
        the Seoul virtual machine monitor can be used to run unmodified
        Linux-based guest OSes.
       

      

      	
       
        With Noux, there exists a runtime environment for Unix
        software such as GNU coreutils, bash, GCC, binutils, and findutils.
       

      

      	
       
        On ARM, Genode can be used as TrustZone monitor, or as a virtual machine
        monitor that facilitates ARM's virtualization extensions.
       

      

     

    

    	Building blocks

    	
     
      There exist hundreds of ready-to-use components such as
     

     
      	
       
        Device drivers for most common PC peripherals including networking,
        storage, display, USB, PS/2, Intel wireless, and audio output.
       

      

      	
       
        Device drivers for a variety of ARM-based SoCs such as Texas Instruments
        OMAP4, Samsung Exynos5, and FreeScale i.MX.
       

      

      	
       
        A GUI stack including a low-complexity GUI server, window management,
        and widget toolkits such as Qt5.
       

      

      	
       
        Networking components such as TCP/IP stacks and packet-level network
        services.
       

      

     

    

   


  
  
  Licensing and commercial support

   
    Genode is commercially supported by the German company Genode Labs GmbH, which
    offers trainings, development work under contract, developer support, and
    commercial licensing:
   

   
    	Genode Labs website

    	
     
      http://www.genode-labs.com
     

    

   


   
    The framework is available under two flavours of licences: an open-source
    license and commercial licensing.
    The primary license used for the distribution of the Genode OS framework is
    the GNU Affero General Public License Version 3 (AGPLv3). In short, the AGPLv3
    grants everybody the rights to
   

   
    	
     
      Use the Genode OS framework without paying any license fee,
     

    

    	
     
      Freely distribute the software,
     

    

    	
     
      Modify the source code and distribute modified versions of the software.
     

    

   

   
    In return, the AGPLv3 requires any modifications and derived work to be
    published under the same or a compatible license. For the full license
    text, refer to
   

   
    	GNU Affero General Public License Version 3

    	
     
      http://genode.org/about/LICENSE
     

    

   


   
    Note that the official license text accompanies the AGPLv3 with an additional
    clause that clarifies our consent to link Genode with all commonly established
    Open-Source licenses.
   

   
    For applications that require more permissive licensing conditions than
    granted by the AGPLv3, Genode Labs offers the option to commercially
    license the technology upon request. Please write to licensing@genode-labs.com.
   

  
  
  About this document

   
    This document is split into two parts. Whereas the first part contains the
    textual description of the architectural and practical foundations, the second
    part serves as a reference of the framework's programming interface. This
    allows the first part to stay largely clear from implementation details.
    Cross-references between both parts are used to connect the conceptual level
    with the implementation level.
   

   
    Chapter Getting started provides engineering-minded readers with
    a practical jump start to explore the code and experiment with it.
    These practical steps are good to get a first impression and will hopefully
    provide the motivation to engage with the core part of the book, which are
    the Chapters Architecture and Components.
   

   
    Chapter Architecture
    introduces Genode's high-level architecture by presenting the concept of
    capability-based security, the resource-trading mechanism, the root of the
    component tree, and the ways how components can collaborate without mutually
    trusting each other. Chapter Components narrows the view on different types
    of components, namely device drivers, protocol stacks, resource multiplexers,
    runtime environments, and applications. The remaining part of the chapter
    focuses on the composition of components.
   

   
    Chapter Development substantiates Chapter Getting started with all
    information needed to develop meaningful components. It covers the
    integration of 3rd-party software, the build system, the tool kit for
    automated testing, and the Git work flow of the regular Genode developers.
   

   
    Chapter System configuration addresses the system integration. After
    presenting Genode's holistic configuration concept, it details the usage of
    the init component, which bootstraps the static part of each Genode system.
   

   
    Chapter Under the hood closes the first part with a look behind the scenes.
    It provides the details and the rationales behind technical decisions,
    explains the startup procedure of components, shows how Genode's concepts are
    mapped to kernel mechanisms, and documents known limitations.
   

   
    The second part of the document gives an overview of the framework's
    C++ programming interface. The content is partially derived from the actual
    source code and supplemented with additional background information.
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 Getting started

  
   Genode can be approached from two different angles: as an operating-system
   architecture or as a practical tool kit. This chapter assists you with
   exploring Genode as the latter. After introducing the recommended
   development environment,
   it guides you through the steps needed to obtain the source code
   (Section Obtaining the source code), to use the tool chain
   (Section Using the build system), to test-drive system scenarios
   (Section A simple system scenario), and to create your first custom
   component from scratch (Section Hello world).
  

  
  
  Recommended development environment

   
    Genode is regularly used and developed on GNU/Linux. It is recommended to
    use the latest long-term support (LTS) version of Ubuntu. Make sure that your
    installation satisfies the following requirements:
   

   
    	
     
      GNU Make version 3.81 (or newer) needed by the build system,
     

    

    	
     
      libSDL-dev needed to run system scenarios directly on Linux,
     

    

    	
     
      tclsh and expect needed by test-automation and work-flow tools,
     

    

    	
     
      qemu, xorriso, parted, gdisk, and e2tools needed for running
      system scenarios on non-Linux platforms via the Qemu emulator.
     

    

   

   
    For using the entire collection of ported 3rd-party software, the following
    packages should be installed additionally:
    byacc, autoconf2.64, autogen, bison, flex, g++, git, gperf,
    libxml2-utils, subversion, and xsltproc.
   

  
  
  Seeking help

   
    The best way to get assistance while exploring Genode is to consult the
    mailing list, which is the primary communication medium of regular
    users and developers alike. Please feel welcome to join in!
   

   
    	Mailing Lists

    	
     
      http://genode.org/community/mailing-lists
     

    

   


   
    If you encounter a new bug, ambiguous documentation, or a missing feature,
    please consider opening a corresponding issue at the issue tracker:
   

   
    	Issue tracker

    	
     
      https://github.com/genodelabs/genode/issues
     

    

   


  
  
  Obtaining the source code

   
    The centerpiece of Genode is the source code found within the official Git
    repository:
   

   
    	Source code at GitHub

    	
     
      https://github.com/genodelabs/genode
     

    

   


   
    To obtain the source code, clone the Git repository:
   


 git clone https://github.com/genodelabs/genode.git


   
    After cloning, you can find the source code within
    the genode/ directory. In the following, we refer to this directory
    as <genode-dir>.
   

  
  
  Source-tree structure

   
   
   Top-level directory

    
     At the root of the directory tree, there is the following content:
    

    
     	doc/

     	
      
       Documentation in plain text format, including the
       release notes
       of all versions. Practical hint: The comprehensive release notes
       conserve most of the hands-on documentation aggregated over the lifetime
       of the project. When curious about a certain topic, it is often worthwhile to
       "grep" for the topic within the release notes to get a starting point
       for investigation.
      

     

     	tool/

     	
      
       Tools and scripts to support the build system, various boot loaders,
       the tool chain, and the management of 3rd-party source code. Please find
       more information in the README file contained in the subdirectory.
      

     

     	repos/

     	
      
       The so-called source-code repositories, which contain the actual
       source code of the framework components. The source code is not organized
       within a single source tree but multiple trees. Each tree is called a
       source-code repository and has the same principle structure.
       At build time, a set of source-code repositories can be selected to be
       incorporated into the build process. Thereby, the source-code repositories
       provide a coarse-grained modularization of the framework.
      

     

    


   
   
   Repositories overview

    
     The <genode-dir>/repos/ directory contains the following source-code
     repositories.
    

    
     	base/

     	
      
       The fundamental framework interfaces as well as the platform-agnostic parts
       of the core component (Section Core - the root of the component tree).
      

     

     	base-<platform>/

     	
      
       Platform-specific supplements of the base/ repository where <platform>
       corresponds to one of the following:
      

      
       	linux

       	
        
         Linux kernel (both x86_32 and x86_64).
        

       

       	nova

       	
        
         NOVA microhypervisor.
         More information about the NOVA platform is provided by Section
         Execution on the NOVA microhypervisor (base-nova).
        

       

       	hw

       	
        
         The hw platform allows the execution of Genode on bare hardware
         without the need for a separate kernel. The kernel functionality is
         included in the core component. It supports the ARM, 64-bit x86,
         and 64-bit RISC-V CPU architectures. The hw platform is also used as the
         basis for executing Genode on top of the Muen separation kernel.
         More information about the hw platform can be found in Section
         Execution on bare hardware (base-hw).
        

       

       	sel4

       	
        
         The seL4 microkernel developed by NICTA in Sydney. The support for this
         kernel is highly experimental.
        

       

       	foc

       	
        
         Fiasco.OC is a modernized version of the L4/Fiasco microkernel with a
         completely revised kernel interface fostering capability-based
         security.
        

       

       	okl4

       	
        
         OKL4 kernel originally developed at Open-Kernel-Labs.
        

       

       	pistachio

       	
        
         L4ka::Pistachio kernel developed at University of Karlsruhe.
        

       

       	fiasco

       	
        
         L4/Fiasco kernel originally developed at Technische Universität Dresden.
        

       

      


     

     	os/

     	
      
       OS components such as the init component, device drivers, and basic system
       services.
      

     

     	demo/

     	
      
       Various services and applications used for demonstration purposes, for
       example the graphical application launcher and the tutorial browser
       described in Section A simple system scenario can be found here.
      

     

     	hello_tutorial/

     	
      
       Tutorial for creating a simple client-server scenario. This
       repository includes documentation and the complete source code.
      

     

     	libports/

     	
      
       Ports of popular open-source libraries, most importantly the C library.
       Among the 3rd-party libraries are Qt5, libSDL, freetype, Python, ncurses,
       Mesa, and libav.
      

     

     	dde_linux/

     	
      
       Device-driver environment for executing Linux kernel subsystems as
       user-level components. Among the subsystems are the USB stack, the
       Intel wireless stack, and the TCP/IP stack.
      

     

     	dde_ipxe/

     	
      
       Device-driver environment for executing network drivers of the iPXE project.
      

     

     	dde_bsd/

     	
      
       Device-driver environment for audio drivers ported from OpenBSD.
      

     

     	dde_rump/

     	
      
       Port of rump kernels, which are used to execute subsystems of the NetBSD
       kernel as user-level components.
       The repository contains a server that uses a rump kernel to provide
       various NetBSD file systems.
      

     

     	ports/

     	
      
       Ports of 3rd-party applications.
      

     

     	gems/

     	
      
       Components that use
       both native Genode interfaces as well as features of other high-level
       repositories, in particular shared libraries provided by libports/.
      

     

    


  
  
  Using the build system

   
    Genode relies on a custom tool chain, which can be downloaded at the following
    website:
   

   
    	Tool chain

    	
     
      http://genode.org/download/tool-chain
     

    

   


   
   
   Build directory

    
     The build system never touches the source tree but generates object
     files, libraries, and programs in a dedicated build directory. We do not have a
     build directory yet. For a quick start, let us create one using the following
     command:
    


 cd <genode-dir>
 ./tool/create_builddir x86_64


    
     To follow the subsequent steps of test driving the Linux version of Genode,
     the specified platform argument should match your host OS installation. If
     you are using a 32-bit installation, specify x86_32 instead of x86_64.
    

    
     The command creates a new build directory at build/x86_64.
    

   
   
   Build configuration

    
     Before using the build directory, it is recommended to revisit and
     possibly adjust the build configuration, which is located in the
     etc/ subdirectory of the build directory, e.g., build/x86_64/etc/.
     The build.conf file contains global build parameters, in particular
     the selection of source-code repositories to be incorporated. It is also
     a suitable place for adding global build options. For example, for
     enabling GNU make to use 4 CPU cores, add the following line to the
     build.conf file:
    


 MAKE += -j4


   
   
   Building components

    
     The recipe for building a component has the form of a target.mk file
     within the src/ directory of one of the source-code repositories.
     For example, the target.mk file of the init component is located
     at <genode-dir>/repos/os/src/init/target.mk. To build the component, execute
     the following command from within the build directory:
    


 make init


    
     The argument "init" refers to the path relative to the src/ subdirectory.
     The build system determines and builds all targets found under this path in
     all source-code repositories.
     When the build the is finished, the resulting executable binary can be found
     in a subdirectory that matches the target's path. Additionally, the build
     system installs a symbolic link in the bin/ subdirectory that points to the
     executable binary.
    

    
     If the specified path contains multiple target.mk files in different
     subdirectories, the build system builds all of them. For example, the
     following command builds all targets found within one of the
     <repo>/src/drivers/ subdirectories:
    


 make drivers


    
     Furthermore, it is possible to specify multiple targets at once. The following
     command builds both the init component and the timer driver:
    


 make init drivers/timer


  
  
  A simple system scenario

   
    The build directory offers much more than an environment for building
    components. It supports the automation of system-integration work flows,
    which typically include the following steps:
   

   
    	
     
      Building a set of components,
     

    

    	
     
      Configuring the static part of a system scenario,
     

    

    	
     
      Assembling a boot directory with all ingredients needed by the scenario,
     

    

    	
     
      Creating a boot image that can be loaded onto the target platform,
     

    

    	
     
      Booting the target platform with the boot image,
     

    

    	
     
      Validating the behavior of the scenario.
     

    

   

   
    The recipe for such a sequence of steps can be expressed in the form of
    a so-called run script. Each run script represents a system scenario and
    entails all information required to reproduce the scenario. Run scripts can
    reside within the run/ subdirectory of any source-code repository.
   

   
    Genode comes with a ready-to-use run script showcasing simple graphical demo
    scenario. It is located at <genode-dir>/repos/os/run/demo.run and can
    be executed from within the build directory via:
   


 make run/demo KERNEL=linux


   
    In contrast to the building of individual components as described above,
    the integration of a complete system scenario requires us to select a
    particular OS kernel to use. The command instructs the build system to
    integrate and start the "run/demo" scenario on the Linux kernel.
    It will lookup a run script called demo.run in all repositories
    listed in etc/build.conf. It will eventually find the run script within
    the os/ repository. After completing the build of all components needed,
    the command will then automatically start the scenario.
    Because the build directory was created for the x86_64 platform and we
    specified "linux" as KERNEL, the scenario will be executed directly on the
    host system where each Genode component resides in a distinct Linux process.
    To explore the scenario, follow the instructions given by the graphical
    tutorial browser.
   

   
    The terminal where the makerun/demo command was issued displays the log
    output of the Genode system. To cancel the execution,
    hit control-c in the terminal.
   

   
   
   Targeting a microkernel

    
     Whereas the ability to run system scenarios on top of Linux allows for the
     convenient and rapid development of components and protocols, Genode is
     primarily designed for the use of microkernels. The choice of the microkernel
     to use is up to the user of the framework and may depend on various factors
     like the feature set, the supported hardware architectures, the license, or
     the development community. To execute the demo scenario directly on the NOVA
     microhypervisor, the following preparatory steps are needed:
    

    
     	
      
       Download the 3rd-party source code of the NOVA microhypervisor
      


 <genode-dir>/tool/ports/prepare_port nova


      
       The prepare_port tool downloads the source code of NOVA to a
       subdirectory at <genode-dir>/contrib/nova-<hash>/ where <hash>
       uniquely refers to the prepared version of NOVA.
      

     

     	
      
       On real hardware, the scenario needs a framebuffer driver. The VESA
       driver relies on a 3rd-party x86-emulation library in order to execute
       the VESA BIOS code. Download the 3rd-party source code of the x86emu
       library:
      


 <genode-dir>/tool/ports/prepare_port x86emu


      
       The source code will be downloaded to <genode-dir>/contrib/x86emu-<hash>/.
      

     

     	
      
       To boot the scenario as an operating system on a PC, a boot loader is
       needed. The build process produces a bootable disk or ISO image
       that includes the GRUB2 boot loader as well as a working boot-loader
       configuration. Download the boot loader as ingredient for the image-creation
       step.
      


 <genode-dir>/tool/ports/prepare_port grub2


     

     	
      
       Since NOVA supports the x86_64 architecture of our build directory, we
       can keep using the existing build directory that we just used for Linux.
       However, apart from enabling the parallelization of the build process as
       mentioned in Section Using the build system, we need to incorporate
       the libports source-code repository into the build process by uncommenting
       the corresponding line in the configuration. Otherwise the build system
       would fail to build the VESA driver, which resides within libports/.
      

     

    

    
     With those preparations in place, issue the execution of the demo run
     script from within the build directory:
    


 make run/demo KERNEL=nova


    
     This time, an instance of Qemu will be started to execute the demo scenario.
     The Qemu command-line arguments appear in the log output. As suggested
     by the arguments, the scenario is supplied to Qemu as an ISO image residing
     at var/run/demo.iso. This ISO image can not only be used with Qemu but
     also with a real machine. For example, creating a bootable USB stick with
     the system scenario is as simple as writing the ISO image onto an USB stick:
    


 sudo dd if=var/run/demo.iso of=/dev/<usb-device> bs=8M conv=fsync


    
     Note that <usb-device> refers to the device node of an USB stick. It can be
     determined using the dmesg command after plugging-in the USB stick.
     For booting from the USB stick, you may need to adjust the BIOS
     settings of the test machine accordingly.
    

  
  
  Hello world

   
    This section introduces the steps needed to create and execute a simple
    custom component that prints a hello-world message.
   

   
   
   Using a custom source-code repository

   
    
     In principle, it would be possible to add a new component to one of the
     existing source-code repositories found at <genode-dir>/repos/. However,
     unless the component is meant to be incorporated into upstream development
     of the Genode project, it is generally recommended to keep custom code
     separate from Genode's code base. This eases future updates to new versions
     of Genode and allows you to pick a revision-control system of your choice.
    

    
     The new repository must appear within the <genode-dir>/repos/ directory.
     This can be achieved by either hosting it as a subdirectory or by creating
     a symbolic link that points to an arbitrary location of your choice. For
     now, let us host a new source-code repository called "lab" directly within
     the repos/ directory.
    


 cd <genode-dir>
 mkdir repos/lab


    
     The lab repository will contain the source code and build rules for a
     single component as well as a run script for executing the component within
     Genode. Component source code reside in a src/ subdirectory. By convention,
     the src/ directory contains further subdirectories for hosting different
     types of components, in particular server (services and protocol stacks),
     drivers (hardware-device drivers), and app (applications). For the
     hello-world component, an appropriate location would be _src/app/hello/_:
    


 mkdir -p repos/lab/src/app/hello


   

   
   
   Source code and build description

   
    
     The hello/ directory contains both the source code and the build description
     of the component. The main part of each component typically resides in a
     file called main.cc. Hence, for a hello-world program, we have to create
     the repos/lab/src/app/hello/main.cc file with the following content:
    


 #include <base/component.h>
 #include <base/log.h>

 void Component::construct(Genode::Env 
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   Contemporary operating systems are immensely complex to accommodate a
   large variety of applications on an ever diversifying spectrum of hardware
   platforms. Among the functionalities provided by a commodity operating system
   are device drivers, protocol stacks such as file systems and network
   protocols, the management of hardware resources, as well as the provisioning
   of security functions. The latter category is meant for protecting the
   confidentiality and integrity of information and the lifelines of critical
   functionality. For assessing the effectiveness of such a security function,
   two questions must be considered. First, what is the potential attack surface
   of the function? The answer to this question yields an assessment about the
   likelihood of a breach. Naturally, if there is a large number of potential
   attack vectors, the security function is at high risk. The second question is:
   What is the reach of a defect? If the compromised function has unlimited
   access to all information processed on the system, the privacy of all users
   may be affected. If the function is able to permanently install software, the
   system may become prone to back doors.
  

  
   Today's widely deployed operating systems do not isolate security-critical
   functions from the rest of the operating system. In contrary, they are
   co-located with most other operating-system functionality in a single
   high-complexity kernel. Thereby, those functions are exposed to the other
   parts of the operating system. The likelihood of a security breach is as
   high as the likelihood of bugs in an overly complex kernel. In other words:
   It is certain. Moreover, once an in-kernel function has been compromised, the
   defect has unlimited reach throughout the system.
  

  
   The Genode architecture was designed to give more assuring answers to the two
   questions stated. Each piece of functionality should be exposed to only those
   parts of the system, on which it ultimately depends. But it remains hidden
   from all unrelated parts. This minimizes the attack surface on individual
   security functions and thereby reduces the likelihood for a security breach.
   In the event that one part of the system gets compromised, the scope of the
   defect is limited to the particular fragment and its dependent parts.
   Unrelated functionalities remain unaffected. To realize this idea, Genode
   composes the system out of many components that interact with each other. Each
   component serves a specific role and uses well-defined interfaces to interact
   with its peers. For example, a network driver accesses a physical network card
   and provides a bidirectional stream of network packets to another component,
   which, in turn, may process the packets using a TCP/IP stack and a network
   application. Even though the network driver and the TCP/IP stack cooperate
   when processing network packets, they are living in separate protection
   domains. So a bug in one component cannot observe or corrupt the internal
   state of another.
  

  
   Such a component-based architecture, however, raises a number of questions,
   which are addressed throughout this chapter.
   Section Capability-based security explains how components can cooperate
   without inherently trusting each other.
   Section Recursive system structure answers the questions of who defines the
   relationship between components and how components become acquainted with each
   other.
   An operating system ultimately acts on physical hardware resources such
   as memory, CPUs, and peripheral devices.
   Section Core - the root of the component tree describes how such resources
   are made available to components.
   Section Component creation answers the question of how a new component comes
   to life.
   The variety of relationships between components and their respective
   interfaces call for different communication primitives. Section
   Inter-component communication introduces Genode's inter-component communication
   mechanisms in detail.
  

  
  
  Capability-based security

   
    This section introduces the nomenclature and the general model of Genode's
    capability-based security concept. The Genode OS framework is not tied to one
    kernel but supports a variety of kernels as base platforms. On each of those
    base platforms, Genode uses different kernel mechanisms to implement the
    general model as closely as possible. Note however that not all kernels
    satisfy the requirements that are needed to implement the model securely. For
    assessing the security of a Genode-based system, the respective
    platform-specific implementation must be considered. Sections
    Execution on bare hardware (base-hw) and
    Execution on the NOVA microhypervisor (base-nova)
    provide details for selected kernels.
   

   
   
   Capability spaces, object identities, and RPC objects

   
    
     Each component lives inside a protection domain that provides an isolated
     execution environment.
    

    [image: img/protection_domain]

    
     Genode provides an object-oriented way of letting components interact with
     each other. Analogously to object-oriented programming languages, which have
     the notion of objects and pointers to objects, Genode introduces the notion of
     RPC objects and capabilities to RPC objects.
    

    
     An RPC object provides a remote-procedure call (RPC) interface. Similar to a
     regular object, an RPC object can be constructed and accessed from within the
     same program. But in contrast to a regular object, it can also be called from
     the outside of the component. What a pointer is to a regular object, a
     capability is to an RPC object. It is a token that unambiguously refers to
     an RPC object. In the following, we represent an RPC object as follows.
    

    [image: img/rpc_object]

    
     The circle represents the capability associated with the RPC object. Like a
     pointer to an object, that can be used to call a function of the pointed-to
     object, a capability can be used to call functions of its corresponding RPC
     object. However, there are two important differences between a capability and
     a pointer. First, in contrast to a pointer that can be created out of thin air
     (e.g., by casting an arbitrary number to a pointer), a capability cannot be
     created without an RPC object. At the creation time of an RPC object, Genode
     creates a so-called object identity that represents the RPC object in the
     kernel. Figure img/object_identity illustrates the relationship of an
     RPC object and its object identity.
    

    	
      
      [image: img/object_identity]
    
	
       Relationship between an RPC object and its corresponding object identity.

    


    
     For each protection domain, the kernel maintains a so-called capability space,
     which is a name space that is local to the protection domain. At the creation time of
     an RPC object, the kernel creates a corresponding object identity and lets a
     slot in the protection domain's capability space refer to the RPC object's
     identity. From the component's point of view, the RPC object A has the name 3.
     When interacting with the kernel, the component can use this number to refer
     to the RPC object A.
    

   

   
   
   Delegation of authority and ownership

   
    	
      
      [image: img/delegation]
    
	
       The transitive delegation of a capability from one protection domain to others.

    


    
     The second difference between a pointer and a capability is that a capability
     can be passed to different components without losing its meaning. The transfer
     of a capability from one protection domain to another delegates the authority
     to use the capability to the receiving protection domain.
     This operation is called delegation and can be performed only by the kernel.
     Note that the originator of the delegation does not diminish its authority by
     delegating a capability. It merely shares its authority with the receiving
     protection domain.
     There is no superficial notion of access rights associated with a capability.
     The possession of a capability ultimately enables a protection domain to use
     it and to delegate it further. A capability should hence be understood as an
     access right.
     Figure img/delegation shows the
     delegation of the RPC object's capability to a second protection domain
     and a further delegation of the capability from the second to a third
     protection domain.
     Whenever the kernel delegates a capability from one to another protection domain,
     it inserts a reference to the RPC object's identity into a free slot of the
     target's capability space. Within protection domain 2 shown in Figure
     img/delegation, the RPC object can
     be referred to by the number 5. Within protection domain 3, the same RPC
     object is known as 2.
     Note that the capability delegation does not hand over the ownership of the
     object identity to the target protection domain. The ownership is always
     retained by the protection domain that created the RPC object.
    

    
     Only the owner of an RPC object is able to destroy it along with the
     corresponding object identity. Upon destruction of an object identity, the
     kernel removes all references to the vanishing object identity from all
     capability spaces. This effectively renders the RPC object inaccessible for
     all protection domains. Once the object identity for an RPC object is gone,
     the owner can destruct the actual RPC object.
    

   

   
   
   Capability invocation

   
    
     Capabilities enable components to call methods of RPC objects
     provided by different protection domains. A component that uses
     an RPC object plays the role of a client whereas a component that
     owns the RPC object acts in the role of a server. The interplay between
     client and server is very similar to a situation where a program calls
     a local function. The caller deposits the function arguments at a place where
     the callee will be able to pick them up and then passes control to the
     callee. When the callee takes over control, it obtains the function
     arguments, executes the function, copies the results to a place where the
     caller can pick them up, and finally hands back the control to the caller.
     In contrast to a program-local function call, however, client and server
     are different threads in their respective protection domains. The thread
     at the server side is called entrypoint denoting the fact that it
     becomes active only when a call from a client enters the protection domain
     or when an asynchronous notification comes in. Each component has at least one
     initial entrypoint, which is created as part of the component's execution
     environment.
    

    [image: img/entrypoint]

    
     The wiggly arrow denotes that the entrypoint is a thread. Besides being a
     thread that waits for incoming requests, the entrypoint is responsible for
     maintaining the association between RPC objects and their corresponding
     capabilities. The previous figures illustrated this association with the link
     between the RPC object and its capability. In order to become callable
     from the outside, an RPC object must be associated with a concrete entrypoint.
     This operation results in the creation of the object's identity and the
     corresponding capability. During the lifetime of the object identity, the
     entrypoint maintains the association between the RPC object and its capability in
     a data structure called object pool, which allows for looking up the
     matching RPC object for a given capability. Figure img/object_pool shows a
     scenario where two RPC objects are associated with one entrypoint in the
     protection domain of a server. The capability for the RPC object A has been
     delegated to a client.
    

    	
      
      [image: img/object_pool]
    
	
       The RPC object A and B are associated with the server's entrypoint. A client has a capability for A but not for B. For brevity, the kernel-protected object identities are not depicted. Instead, the dashed line between the capabilities shows that both capabilities refer to the same object identity.

    


    
     If a protection domain is in possession of a capability, each thread executed
     within this protection domain can issue a call to a member function of the RPC
     object that is referred to by the capability. Because this is not a normal
     function call but the invocation of an object located in a different
     protection domain, this operation has to be provided by the kernel. Figure
     img/capability_call illustrates the interaction of the client, the kernel,
     and the server. The kernel operation takes the client-local name of the
     invoked capability, the opcode of the called function, and the function
     arguments as parameters. Upon entering the kernel, the client's thread is
     blocked until it receives a response. The operation of the kernel is
     represented by the dotted line.
     The kernel uses the supplied local name as an
     index into the client's capability space to look up the object identity, to
     which the capability refers. Given the object identity, the kernel is able to
     determine the protection domain and the corresponding entrypoint that is
     associated with the object identity and wakes
     up the entrypoint's thread with information about the incoming request.
     Among this information is the server-local name of the capability that was
     invoked. Note that the kernel has translated the client-local name
     to the corresponding server-local name. The capability name spaces of client and
     server are entirely different. The entrypoint uses this number as a key into
     its object pool to find the locally implemented RPC object A that belongs to
     the invoked capability. It then performs a method call of the so-called
     dispatch function on the RPC object. The dispatch function maps the supplied
     function opcode to the matching member function and calls this function
     with the request arguments.
    

    	
      
      [image: img/capability_call]
    
	
       Control flow between client and server when the client calls a method of an RPC object.

    


    
     The member function may produce function results. Once the RPC object's member
     function returns, the entrypoint thread passes the function results to the
     kernel by performing the kernel's reply operation. At this point, the
     server's entrypoint becomes ready for the next request. The kernel, in turn,
     passes the function results as return values of the original call operation to
     the client and wakes up the client thread.
    

   

   
   
   Capability delegation through capability invocation

   
    
     Section Delegation of authority and ownership explained that capabilities
     can be delegated from one protection domain to another via a kernel operation.
     But it left open the question of how this procedure works. The answer is the use
     of capabilities as RPC message payload. Similar to how a caller of a regular
     function can pass a pointer as an argument, a client can pass a capability as
     an argument to an RPC call. In fact, passing capabilities as RPC arguments or
     results is synonymous to delegating authority between components.
     If the kernel encounters a capability as an argument of a call operation, it
     performs the steps illustrated in Figure img/capability_argument.
    

The local names are denoted as $cap$, e.g., $cap_{arg}$
is the local name of the object identity at the client side, and
$cap_{translated}$ is the local name of the same object identity at the
server side.
    	
      
      [image: img/capability_argument]
    
	
       Procedure of delegating a capability specified as RPC argument from a client to a server.

    


    
     	
      
       The kernel looks up the object identity in the capability space of the
       client. This lookup may fail if the client specified a number of an empty
       slot of its capability space. Only if the lookup succeeds is the kernel able
       to obtain the object identity referred to by the argument. Note that under
       no circumstances can the client refer to object identities, for which it
       has no authority because it can merely specify the object identities
       reachable through its capability space. For all non-empty slots of its
       capability space, the protection domain was authorized to use their
       referenced object identities by the means of prior delegations.
       If the lookup fails, the translation results in an invalid capability
       passed to the server.
      

     

     	
      
       Given the object identity of the argument, the kernel searches the server's
       capability space for a slot that refers to the object identity. Note that
       the term "search" does not necessarily refer to an expensive linear search.
       The efficiency of the operation largely depends on the kernel implementation.
      

     

     	
      
       If the server already possesses a capability to the object identity, the
       kernel translates the argument to the server-local name when passing
       it as part of the request to the server. If the server does not yet possess
       a capability to the argument, the kernel installs a new entry into the
       server's capability space. The new entry refers to the object identity of
       the argument. At this point, the authority over the object identity has been
       delegated from the client to the server.
      

     

     	
      
       The kernel passes the translated or just-created local name of the argument
       as part of the request to the server.
      

     

    

    
     Even though the above description covered the delegation of a single
     capability specified as argument, it is possible to delegate more than one
     capability with a single RPC call.
     Analogously to how capabilities can be delegated from a client to a server as
     arguments of an RPC call, capabilities can be delegated in the other direction
     as part of the reply of an RPC call. The procedure in the kernel is the same
     in both cases.
    

   

  
  
  Recursive system structure

   
    The previous section introduced capability delegation as the fundamental
    mechanism to share authority over RPC objects between protection domains. But
    in the given examples, the client was already in possession of a capability to
    the server's RPC object. This raises the question of how do clients get
    acquainted to servers?
   

   
   
   Component ownership

   
    
     In a Genode system, each component (except for the very first component called
     core) has a parent, which owns the component. The ownership relation between
     a parent and a child is two-fold.
    

    [image: img/parent_child]

    
     On the one hand, ownership stands for responsibility.
     Each component requires physical resources such as the memory
     or in-kernel data structures that represent the component in the
     kernel.
     The parent is responsible for providing a budget of those physical resources to
     the child at the child's creation time but also during the child's entire
     lifetime.
     As the parent has to assign a fraction of its own physical resources to its
     children, it is the parent's natural interest to maintain the balance of
     the physical resources split between itself and each of its children.
     Besides being the provider of resources, the parent defines all aspects of the
     child's execution and serves as the child's primary point of contact for
     seeking acquaintances with other components.
    

    	
      
      [image: img/parent_capability]
    
	
       Initial relationship between a parent and a newly created child.

    


    
     On the other hand, ownership stands for control. Because the parent has
     created its children out of its own resources, it is in the position to
     exercise ultimate power over its children. This includes the decision to
     destruct a child at any time in order to regain the resources that were assigned
     to the child. But it is also in control over the relationships of the child
     with other components known to the parent.
    

    
     Each new component is created as an empty protection domain. It is up to the
     parent to populate the protection domain with code and data, and to create a
     thread that executes the code within the protection domain. At creation time,
     the parent installs a single capability called parent capability into the
     new protection domain. The parent capability enables the child to perform RPC
     calls to the parent. The child is unaware of anything else that exists in the
     Genode system. It does not even know its own identity nor the identity of its
     parent. All it can do is issue calls to its parent using the parent
     capability. Figure img/parent_capability depicts the situation right after
     the creation of a child component. A thread in the parent component created a
     new protection domain and a thread residing in the protection domain. It also
     installed the parent capability referring to an RPC object provided by the
     parent. To provide the RPC object, the parent has to maintain an entrypoint.
     For brevity, entrypoints are not depicted in this and the following figures.
     Section Component creation covers the procedure of creating a component in
     detail.
    

    
     The ownership relation between parent and child implies that each component
     has to inherently trust its parent. From a child's perspective, its parent
     is as powerful as the kernel. Whereas the child has to trust its parent,
     a parent does not necessarily need to trust its children.
    

   

   
   
   Tree of components

   
    
     The parent-child relationship is not limited to a single level. Child
     components are free to use their resources to create further children, thereby
     forming a tree of components. Figure img/recursive_structure shows an
     example scenario. The init component creates subsystems according
     to its configuration. In the example, it created two children, namely
     a GUI and a launcher. The latter allows the user to interactively create
     further subsystems. In the example, launcher was used to start an application.
    

    	
      
      [image: img/recursive_structure]
    
	
       Example of a tree of components. The red arrow represents the ownership relation.

    


    
     At each position in the tree, the parent-child interface is the same. The
     position of a component within the tree is just a matter of composition. For
     example, by a mere configuration change of init, the application could be
     started directly by the init component and would thereby not be subjected to
     the launcher.
    

   

   
   
   Services and sessions

   
    
     The primary purpose of the parent interface is the establishment
     of communication channels between components. Any component can inform
     its parent about a service that it provides. In order to provide a service,
     a component needs to create an RPC object implementing the so-called
     root interface. The root interface offers functions for creating
     and destroying sessions of the service. Figure img/announce shows a
     scenario where the GUI component announces its service to the init component.
     The announce function takes the service name and the capability for the
     service's root interface as arguments. Thereby, the root capability is
     delegated from the GUI to init.
    

    	
      
      [image: img/announce]
    
	
       The GUI component announces its service to its parent using the parent interface.

    


    
     It is up to the parent to decide what to do with the announced information.
     The parent may ignore the announcement or remember that the child "GUI"
     provides a service "GUI". A component can announce any number of services via
     subsequent announce calls.
    

    	
      
      [image: img/session_request]
    
	
       The application requests a GUI session using the parent interface.

    


    
     The counterpart of the service announcement is the creation of a session by
     a client by issuing a session request to its parent. Figure
     img/session_request shows the scenario where the application requests a
     "GUI" session. Along with the session call, the client specifies the
     type of the service and a number of session arguments. The session arguments
     enable the client to inform the server about various properties of the
     desired session. In the example, the client informs the server that
     the client's window should be
     labeled with the name "browser". As a result of the session request, the
     client expects to obtain a capability to an RPC object that implements
     the session interface of the requested service. Such a capability is called
     session capability.
    

    
     When the parent receives a session request from a child, it is free to take
     a policy decision on how to respond to the request. This decision is closely
     related to the management of resources described in Section
     Trading memory between clients and servers.
     There are the following options.
    

    
     	Parent denies the service

     	
      
       The parent may deny the request and thereby prevent the child from using
       a particular service.
      

     

     	Parent provides the service

     	
      
       The parent could decide
       to implement the requested service by itself by handing out a session
       capability for a locally implemented RPC object to the child.
      

     

     	Server is another child

     	
      
       If the parent has received an announcement of the service from another
       child, it may decide to direct the session request to the other child.
      

     

     	Forward to grandparent

     	
      
       The parent may decide to request a session in the name of its child from
       its own parent.
      

     

    


    
     Figure img/session_request illustrates the latter option where the
     launcher responds to the application's session request by
     issuing a session request to its parent, the init component. Note that by
     requesting a session in the name of its child, the launcher is able to
     modify the session arguments according to its policy. In the example,
     the launcher imposes the use of a different label to the session. When
     init receives the session request from the launcher, it is up to init
     to take a policy decision with the same principle options. In fact, each
     component that sits in between the client and the server along the branches
     of the ownership tree can impose its policy onto sessions. The routing of the
     session request and the final session arguments as received by the server are
     the result of the successive application of all policies along the route.
    

    
     Because the GUI announced its "GUI" service beforehand, init is in possession
     of the root capability, which enables it to create and destroy GUI
     sessions. It decides to respond to the launcher's session request by
     triggering the GUI-session creation at the GUI component's root interface.
     The GUI component responds to this request with the creation of a new GUI
     session and attaches the received session arguments to the new session.
     The accumulated session policy is thereby tied to the session's RPC object.
     The RPC object is accompanied with its corresponding session capability,
     which is delegated along the entire call chain up to the originator of the
     session request (Section Delegation of authority and ownership). Once the
     application's session request returns, the application can interact directly
     with the GUI session using the session capability.
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       Session creation at the server.

    


    
     The differentiation between session creation and session use aligns two
     seemingly conflicting goals with each other, namely efficiency and the
     application of the security policies by potentially many components.
     All components on the route between client and server are involved
     in the creation of the session and can thereby impose their policies on the
     session. Once established, the direct communication channel
     between client and server via the session capability allows for the efficient
     interaction between the two components. For the actual use of the session, the
     intermediate components are not on the performance-critical path.
    

   

   
   
   Client-server relationship

   
    
     Whereas the role of a component as a child is dictated by the strict
     ownership relation that implies that the child has to ultimately trust
     its parent, the role of a component as client or server is more diverse.
    

    
     In its role of a client that obtained a session capability as result of a
     session request from its parent, a component is unaware of the real identity
     of the server. It is unable to judge the trustworthiness of the server.
     However, it obtained the session from its parent, which the client ultimately
     trusts. Whichever session capability was handed out by the parent, the client
     is not in the position to question the parent's decision.
    

    
     Even though the integrity of the session capability can be taken for
     granted, the client does not need to trust the server in the same way as it
     trusts its parent. By invoking the capability, the client is in full control
     over the information it reveals to the server in the form of RPC arguments.
     The confidentiality and integrity of its internal state is protected.
     Furthermore, the
     invocation of a capability cannot have side effects on the client's protection
     domain other than the retrieval of RPC results. So the integrity of the
     client's internal state is protected. However, when invoking a capability, the
     client hands over the flow of execution to the server. The client is blocked
     until the server responds to the request. A misbehaving server may never
     respond and thereby block the client infinitely. Therefore, with respect to
     the liveliness of the client, the client has to trust the server. To empathize
     with the role of a component as a client, a capability invocation can be
     compared to the call of a function of an opaque 3rd-party library. When
     calling such a library function, the caller can never be certain to regain
     control. It just expects that a function returns at some point. However, in
     contrast to a call of a library function, a capability invocation does not put
     the integrity and confidentiality of the client's internal state at risk.
    

    
    
    Servers do not trust their clients

     
      When exercising the role of a server, a component should generally not trust
      its clients. On the contrary, from the server's perspective, clients should be
      expected to misbehave. This has two practical implications. First, a server is
      responsible for validating the arguments of incoming RPC requests. Second, a
      server should never make itself dependent on the good will of its clients.
      For example, a server should generally not invoke a capability obtained
      from one of its clients. A malicious client could have delegated a
      capability to a non-responding RPC object, which may block the server
      forever when invoked and thereby make the server unavailable for all
      clients. As another example, the server must always be in control
      over the physical memory resources used for a shared-memory interface between
      itself and its clients. Otherwise, if a client was in control over the
      used memory, it could revoke the memory from the server at any time, possibly
      triggering a fault at the server. The establishment of shared memory is
      described in detail in Section Shared memory.
      Similarly to the role as client, the internal state of a server is protected
      from its clients with respect to integrity and confidentiality.
      In contrast to a client, however, the liveliness of a server is protected as
      well. A server never needs to wait for any response from a client.
      By responding to an RPC request, the server does immediately become ready
      to accept the next RPC request without any prior handshake with the client
      of the first request.
     

    
    
    Ownership and lifetime of a session

     
      The object identity of a session RPC object and additional RPC objects
      that may have been created via the session is owned by the server. So
      the server is in control over the lifetime of those RPC objects.
      The client is not in the immediate
      position to dictate the server when to close a session because it has no power
      over the server. Instead, the procedure of closing a session follows the same
      chain of commands as involved in the session creation. The common parent of
      client and server plays the role of a broker, which is trusted by both
      parties. From the client's perspective, closing a session is a request to its
      parent. The client has to accept that the response to such a request is up to
      the policy of the parent.
      The closing of a session can alternatively be initiated by all nodes of the
      component tree that were involved in the session creation.
     

     
      From the perspective of a server that is implemented by a child, the request
      to close a session originates from its parent, which, as the owner of the
      server, represents an authority that must be ultimately obeyed.
      If the server complies,
      the object identity of the session's RPC object vanishes. Since the kernel
      invalidates capabilities once their associated RPC object is destroyed,
      all capabilities referring to the RPC object - however delegated - are
      implicitly revoked as a side effect.
      Still, a server may ignore the session-close request. In this case, the parent
      of a server might take steps to enforce its will by destructing the server
      altogether.
     

    
    
    Trustworthiness of servers

     
      Servers that are shared by clients of different security levels must be
      designed and implemented with special care. Besides the correct response to
      session-close requests, another consideration is the adherence to the security
      policy as configured by the parent. The mere fact that a server is a child of
      its parent does not imply that the parent won't need to trust it in some
      respects.
     

     
      In cases where is not viable to trust the server (e.g., because the
      server is based on ported software that is too complex for thorough
      evaluation), certain security properties such as the effectiveness of
      closing sessions could be enforced by a small (and thereby trustworthy)
      intermediate server that sits in-between the real server and the client.
      This intermediate server would then effectively wrap the server's
      session interface.
     

   

  
  
  Resource trading

   
    As introduced in Section Component ownership, child components are created
    out of the resources of their respective parent components. This section
    describes the underlying mechanism. It first introduces the concept of
    PD sessions as resource accounts in Section Resource assignment.
    Section Trading memory between clients and servers
    explains how PD sessions are used to trade resources between components.
    The resource-trading mechanism ultimately allows servers to become resilient
    against client-driven resource-exhaustion attacks. However, such servers need
    to take special precautions that are explained in Section
    Component-local heap partitioning.
    Section Dynamic resource balancing presents a mechanism for the dynamic
    balancing of resources among cooperative components.
   

   
   
   Resource assignment

   
    
     In general, it is the operating system's job to manage the physical resources
     of the machine in a way that enables multiple applications to utilize them in
     a safe and efficient manner. The physical resources are foremost the physical
     memory, the processing time of the CPUs, and devices.
    

    
    
    The traditional approach to resource management

     
      Traditional operating systems usually provide abstractions of physical resources
      to applications running on top of the operating system. For example, instead
      of exposing the real interface of a device to an application, a Unix kernel
      provides a representation of the device as a pseudo file in the virtual file
      system. An application interacts with the device indirectly by operating on
      the respective pseudo file via a device-class-specific API (ioctl
      operations). As another example, a traditional OS kernel provides each
      application with an arbitrary amount of virtual memory, which may be much
      larger than the available physical memory. The application's virtual memory is
      backed with physical memory not before the application actually uses the
      memory. The pretension of unlimited memory by the kernel relieves application
      developers from considering memory as a limited resource. On the other hand,
      this convenient abstraction creates problems that are extremely hard or even
      impossible to solve by the OS kernel.
     

     
      	
       
        The amount of physical memory that is at the disposal for backing
        virtual memory is limited. Traditional OS kernels employ strategies
        to uphold the illusion of unlimited memory by swapping memory pages to disk.
        However, the swap space on disk is ultimately limited, too. At one point,
        when the physical resources are exhausted, the pretension of unlimited
        memory becomes a leaky abstraction and forces the kernel to take extreme
        decisions such as killing arbitrary processes to free up physical memory.
       

      

      	
       
        Multiple applications including critical applications as well as
        potentially misbehaving applications share one pool of physical resources.
        In the presence of a misbehaving application that exhausts the physical
        memory, all applications are equally put at risk.
       

      

      	
       
        Third, by granting each application the legitimate ability to consume as
        much memory as the application desires, applications cannot be held
        accountable for their consumption of physical memory. The kernel cannot
        distinguish a misbehaving from a well-behaving memory-demanding application.
       

      

     

     
      There are several approaches to relieve those problems. For example, OS
      kernels that are optimized for resource utilization may employ heuristics that
      take the application behavior into account for parametrizing page-swapping
      strategies. Another example is the provisioning of a facility for pinned
      memory to applications. Such memory is guaranteed to be backed by physical
      memory. But such a facility bears the risk of allowing any application to
      exhaust physical memory directly. Hence, further heuristics are needed to
      limit the amount of pinned memory an application may use. Those counter
      measures and heuristics, while making the OS kernel more complex, are mere
      attempts to fight symptoms but unable to solve the actual problems caused by
      the lack of accounting. The behavior of such systems remains largely
      indeterministic.
     

     
      As a further consequence of the abstraction from physical resources, the
      kernel has to entail functionality to support the abstraction. For example,
      for swapping memory pages to disk, the kernel has to depend on an in-kernel
      disk driver. For each application, whether or not it ever touches the disk,
      the in-kernel disk driver is part of its trusted computing base.
     

    
    
    PD sessions and balances

     
      Genode does not abstract from physical resources. Instead, it solely
      arbitrates the access to such resources and provides means to delegate the
      authority over resources between components.
      Low-level physical resources are represented as services
      provided by the core component at the root of the component tree.
      The core component is described in detail in Section
      Core - the root of the component tree.
      The following description focuses on memory as the most prominent low-level
      resource managed by the operating system. Processing time is subject
      to the kernel's scheduling policy whereas the management of the higher-level
      resources such as disk space is left to the respective servers that provide
      those resources.
     

     
      Physical memory is handed out and accounted by the PD service of core. The best
      way to describe the idea is to draw an analogy between the PD service and a bank.
      Each PD session corresponds to a bank account. Initially, when opening
      a new account, there is no balance. However, by having the authority over
      an existing bank account with a balance, one can transfer funds from the
      existing account to the new account.
      Naturally, such a transaction will decrease the balance of the
      originating account. Internally at the bank, the transfer does not involve any
      physical bank notes. The transaction is merely a change of balances of both
      bank accounts involved.
      A bank customer with the authority over a given
      bank account can use the value stored on the bank account to purchase physical
      goods while withdrawing the costs from the account.
      Such a withdrawal will naturally decrease the balance on the account. If the
      account is depleted, the bank denies the purchase attempt.
      Analogously to purchasing physical goods by withdrawing balances from a bank
      account, physical memory can be allocated from a PD session. The balance
      of the PD session is the PD session's quota.
      A piece of allocated physical memory is represented by a so-called dataspace
      (see Section Dataspaces for more details). A RAM dataspace is a container
      of physical memory that can be used for storing data.
     

    
    
    Subdivision of budgets

     
      Similar to a person with a bank account, each component of a Genode system
      has a session at core's PD service.
      At boot time, the core component creates an initial PD session with the balance
      set to the amount of available physical memory. This PD session is designated
      for the init component, which is the first and only child of core.
      On request by init, core delegates the capability for this initial PD session
      to the init component.
     

     	
       
       [image: img/memory_assignment]
     
	
        Init assigns a portion of its memory to a child. In addition to its own PD session (2), init has created a second PD session (3) designated for its child.

     


     
      For each child component spawned by the init component, init creates a new
      PD session at core. Figure img/memory_assignment exemplifies this
      step for one child. As the result from the session creation, it obtains the
      capability for the new PD session. Because it has the authority over both
      its own and the child's designated PD session, it can transfer a certain
      amount of RAM quota from its own account to the child's account by invoking
      its own PD-session capability and specifying the beneficiary's PD-session
      capability as argument. Core responds to the request by atomically adjusting
      the quotas of both PD sessions by the specified amount.
      In the case of init, the amount depends on init's
      configuration. Thereby, init explicitly splits its
      own RAM budget among its child components. Each child created by init can
      obtain the capability for its own PD session from init via the parent
      interface and thereby gains the authority over the memory budget that was
      assigned to it.
      Note however, that no child has the authority over init's PD session nor
      the PD sessions of any siblings. The mechanism for distributing a given
      budget among multiple children works recursively. The children of init
      can follow the same procedure to further subdivide their budgets for
      spawning grandchildren.
     

    
    
    Protection against resource stealing
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        Memory-stealing attempt

     


     
      A parent that created a child subsystem out of its own memory resources,
      expects to regain the spent resources when destructing the subsystem. For
      this reason, it must not be possible for a child to transfer funds to
      another branch of the component tree without the consent of the parent.
      Figure img/resource_stealing illustrates an example scenario that
      violates this expectation.
      The client and server components conspire to
      steal memory from the child. The client was created by the child and
      received a portion of the child's memory budget. The client requested
      a session for a service that was eventually routed to the server.
      The client-server relationship allows the client to delegate capabilities
      to the server. Therefore, it is able to delegate its own PD session
      capability to the server.
      The server, now in possession of the client's and its own PD session
      capabilities, can transfer memory from the client's to its own PD session.
      After this transaction,
      the child has no way to regain its memory resources because it has no
      authority over the server's PD session.
     

     
      To prevent such resource-stealing scenarios, Genode restricts the quota
      transfer between arbitrary PD sessions. Each PD session must have a
      reference PD session, which can be defined only once. Transfers are
      permitted only between a PD session and its reference PD session.
      When creating the PD session of a child component, the parent registers
      its own PD session as the child's reference PD session. This way, the
      parent becomes able to transfer budgets between its own and
      the child's PD session.
     

    
    
    PD session destruction

     
      When a PD session is closed, core destroys all dataspaces that were
      allocated from the PD session and transfers the PD session's final budget
      to the corresponding reference PD session.
     

   

   
   
   Trading memory between clients and servers

   
    
     An initial assignment of memory to a child is not always practical because
     the memory demand of a given component may be unknown at its construction
     time. For example, the memory needed by a GUI server over its lifetime
     is not known a priori but depends on the number of its clients, the number
     of windows on screen, or the amount of pixels that must be held at the
     server. In many cases, the memory usage of a server depends on the
     behavior of its clients. In traditional operating systems, system services
     like a GUI server would allocate memory on behalf of its clients. Even though
     the allocation was induced by a client, the server performs the allocation.
     The OS kernel remains unaware of the fact that the server solely needs the
     allocated memory for serving its client. In the presence of a misbehaving
     client that issues an infinite amount of requests to the server where each
     request triggers a server-side allocation (for example the creation of a new
     window), the kernel will observe the server as a resource hog. Under
     resource pressure, it will likely select the server to be punished.
     Each server that performs allocations on behalf of its clients is prone to
     this kind of attack. Genode solves this problem by letting clients pay for
     server-side allocations. Client and server may be arbitrary nodes in
     the component tree.
    

    
    
    Session quotas

     
      As described in the previous section, at the creation time of a child, the
      parent assigns a part of its own memory quota to the new child. Since the
      parent retains the PD-session capabilities of all its children, it can issue
      further quota transfers back and forth between the children's PD sessions
      and its own PD session, which represents the reference account for all children.
      When a child requests a session at the parent interface, it can attach a
      fraction of its quota to the new session by specifying an amount of memory to
      be donated to the server as a session argument. This amount is called
      session quota. The session quota can be used by the server during the
      lifetime of the session. It is returned to the client when the session is
      closed.
     

     
      When receiving a session request, the parent has to distinguish three different
      cases depending on its session-routing decision as described in Section
      Services and sessions.
     

     
      	Parent provides the service

      	
       
        If the parent provides the requested service by itself, it first checks
        whether the session quota meets its need for providing the service. If so,
        it transfers the session quota from the requesting child's PD session to
        its own PD session. This step may fail if the child offered a session quota
        larger than the available quota in the child's PD session.
       

      

      	Server is another child

      	
       
        If the parent decides to route the session request to another child, it
        transfers the session quota from the client's PD session to the server's
        PD session. Because the PD sessions are not related to each other as
        both have the parent's PD session as reference account, this transfer
        from the client to the server consists of two steps. First, the parent
        transfers the session quota to its own PD session. If this step succeeded,
        it transfers the session quota from its own PD session to the server's PD
        session. The parent keeps track of the session quota for each session so
        that the quota transfers can be reverted later when closing the session. Not
        before the transfer of the session quota to the server's PD session
        succeeded, the parent issues the actual session request at the server's root
        interface along with the information about the transferred session quota.
       

      

      	Forward to grandparent

      	
       
        The parent may decide to forward the session request to its own parent. In
        this case, the parent requests a session on behalf of its child. The
        grandparent neither knows nor cares about the actual origin of the request
        and will simply decrease the memory quota of the parent. For this reason,
        the parent transfers the session quota from the requesting child to its own
        PD session before issuing the session request at the grandparent.
       

      

     


     
      Quota transfers may fail if there is not enough budget on the originating
      account. In this case, the parent aborts the session creation and reflects
      the lack of resources as an error to the originator of the session
      request.
     

     
      This procedure works recursively. Once the server receives the session request
      along with the information about the provided session quota, it can use this
      information to decide whether or not to provide the session under these
      resource conditions. It can also use the information to tailor the quality of
      the service according to the provided session quota. For example, a larger
      session quota might enable the server to use larger caches or communication
      buffers for the client's session.
     

    
    
    Session upgrades

     
      During the lifetime of a session, the initial session quota may turn out to be
      too scarce. Usually, the server returns such a scarcity condition as an
      error of operations that imply server-side allocations.
      The client may handle such a condition by upgrading the session quota of an
      existing session by issuing an upgrade request to its parent along with
      the targeted session capability and the additional session quota. The
      upgrade works analogously to the session creation. The server will
      receive the information about the upgrade via the root interface of the
      service.
     

    
    
    Closing sessions

     
      If a child issues a session-close request to its parent, the parent determines
      the corresponding server, which, depending on the
      route of the original session request, may be locally implemented, provided by
      another child, or provided by the grandparent. Once the server receives the
      session-close request, it is responsible for releasing all resources that were
      allocated from the session quota. The release of resources should revert
      all allocations the server has performed on behalf its client. Stressing the
      analogy with the bank account, the server has to sell the physical goods
      (i.e., RAM dataspaces) it purchased from the client's session quota to restore
      the balance on its PD session.
      After the server has reverted all session-specific allocations, the server's
      PD session is expected to have at least as much available budget as the
      session quota of the to-be-closed session. As a result, the session quota can
      be transferred back to the client.
     

     
      However, a misbehaving server may fail to release those resources by malice
      or because of a bug. For example, the server may be unable to free a dataspace
      because it mistakenly used the dataspace for another client's data.
      Another example would be a memory leak in the server.
      Such misbehavior is detected on the attempt to withdraw the session
      quota from the server's PD session. If the server's available RAM quota after
      closing a session remains lower than the session quota, the server apparently
      peculated memory.
      If the misbehaving server was locally provided by the
      parent, it has the full authority to not hand back the session quota to its
      child. If the misbehaving service was provided by the grandparent, the parent
      (and its whole subsystem) has to subordinate. If, however, the server was
      provided by another child and the child refuses to release resources, the
      parent's attempt to withdraw the session quota from the server's PD session
      will fail.
      It is up to the policy of the parent to handle such a failure either by
      punishing the server (e.g., killing the component) or by granting more of its
      own quota. Generally, misbehavior is against the server's own interests. A
      server's best interest is to obey the parent's close request to avoid
      intervention.
     

   

   
   
   Component-local heap partitioning

   
    
     Components that perform memory allocations on behalf of untrusted parties
     must take special precautions for the component-local memory
     management.
     There are two prominent examples for such components.
     As discussed in Section Trading memory between clients and servers, a
     server may be used by multiple clients that must not interfere with
     each other. Therefore, server-side memory allocations on behalf of a
     particular client must strictly be accounted to the client's session quota.
     Second, a parent with multiple children may need to allocate memory to
     perform the book keeping for the individual children, for example,
     maintaining the information about their open sessions and their
     session quotas. The parent should account those child-specific allocations
     to the respective children. In both cases, it is not sufficient to merely
     keep track of the amount of memory consumed on behalf of each untrusted party
     but the actual allocations must be performed on independent backing stores.
    

    	
      
      [image: img/anonymous_heap]
    
	
       A server allocates anonymous memory on behalf of multiple clients from a single heap.

    


    
     Figure img/anonymous_heap shows a scenario where a server performs
     anonymous memory allocations on behalf of two session. The memory is allocated
     from the server's heap. Whereas allocations from the heap are of byte
     granularity, the heap's backing store consists of several dataspaces. Those
     dataspaces are allocated from the server's PD session as needed but at a much
     larger granularity. As depicted in the figure, allocations from both sessions
     end up in the same dataspaces. This becomes a problem once one session is
     closed. As described in the previous section, the server's parent expects the
     server to release all resources that were allocated from the corresponding
     session quota. However, even if the server reverts all heap allocations that
     belong to the to-be-closed session, the server could still not release the
     underlying backing store because all dataspaces are still occupied with memory
     objects of another session. Therefore, the server becomes unable to comply
     with the parent's expectation.
    

    	
      
      [image: img/heap_partitions]
    
	
       A server performs memory allocations from session-specific heap partitions.

    


    
     The solution of this problem is illustrated in Figure img/heap_partitions.
     For each session, the server maintains a separate heap partition. Each
     memory allocation on behalf of a client is performed from the session-specific
     heap partition rather than from a global heap. This way, memory objects of
     different sessions populate disjoint dataspaces. When closing a session,
     the server reverts all memory allocations from the session's heap. After
     freeing the session's memory objects, the heap partition becomes empty. So it
     can be destroyed. By destroying the heap partition, the underlying dataspaces
     that were used as the backing store can be properly released.
    

   

   
   
   Dynamic resource balancing

   
    
     As described in Section Resource assignment, parent components explicitly
     assign physical resource budgets to their children. Once assigned, the
     budget is at the disposal of the respective child subsystem until the
     subsystem gets destroyed by the parent.
    

    
     However, not all components have well-defined resource demands. For example, a
     block cache should utilize as much memory as possible unless the memory is
     needed by another component. The assignment of fixed amount of memory to such
     a block cache cannot accommodate changes of workloads over the potentially
     long lifetime of the component. If dimensioned too small, there may be a lot
     of slack memory remaining unutilized. If dimensioned too large, the block
     cache would prevent other and possibly more important components to use the
     memory. A better alternative is to enable a component to adapt its resource
     use to the resource constraints of its parent. The parent interface supports
     this alternative with a protocol for the dynamic balancing of resources.
    

    
     The resource-balancing protocol uses a combination of synchronous
     remote procedure calls and asynchronous notifications. Both mechanisms
     are described in Section Inter-component communication. The child
     uses remote procedure calls to talk to its parent whereas the parent
     uses asynchronous notifications to signal state changes to the child.
     The protocol consists of two parts, which are complementary.
    

    
    
    Resource requests

     
      By issuing a resource request to its parent, a child applies for an upgrade
      of its resources. The request takes the amount of desired resources as
      argument. A child would issue such a request if it detects scarceness of
      resources. A resource request returns immediately regardless of whether
      additional resources have been granted or not. The child may proceed working
      under the low resource conditions or it may block and wait for a
      resource-available signal from its parent.
      The parent may respond to this request in different ways. It
      may just ignore the request, possibly stalling the child. Alternatively,
      it may immediately transfer additional quota to the child's PD session.
      Or it may take further actions to free up resources to accommodate the child.
      Those actions may involve long-taking operations such as the destruction
      of subsystems or the further propagation of resource request towards the
      root of the component tree.
      Once the parent has freed up enough resources to accommodate the child's
      request, it transfers the new resources to the child's PD session and
      notifies the child by sending a resource-available signal.
     

    
    
    Yield requests

     
      The second part of the protocol enables the parent to express its wish for
      regaining resources. The parent notifies the child about this condition by
      sending a yield signal to the child. On the reception of such a signal, the
      child picks up the so-called yield request at the parent using a remote
      procedure call. The yield request contains the amount of resources the parent
      wishes to regain. It is up to the child to comply with a yield request or not.
      Some subsystems have meaningful ways to respond to yield requests. For
      example, an in-memory block cache could write back the cached information and
      release the memory consumed by the cache. Once the child has succeeded in
      freeing up resources, it reports to the parent by issuing a so-called yield
      response via a remote procedure call to the parent. The parent may respond to
      a yield response by withdrawing resources from the child's PD session.
     

   

  
  
  Core - the root of the component tree

   
    Core is the first user-level component, which is directly created by the
    kernel. It thereby represents the root of the component tree.
    It has access to the raw physical resources such as memory, CPUs,
    memory-mapped devices, interrupts, I/O ports, and boot modules.
    Core exposes those low-level resources as services so that they
    can be used by other components. For example, physical memory is made
    available as so-called RAM dataspaces allocated from core's PD service,
    interrupts are represented by the IRQ service, and CPUs are
    represented by the CPU service. In order to access a resource, a component
    has to establish a session to the corresponding service. Thereby the
    access to physical resources is subjected to the routing of session requests
    as explained in Section Services and sessions. Moreover, the
    resource-trading concept described in Section
    Trading memory between clients and servers applies to core services in
    the same way as for any other service.
   

   
    In addition to making hardware resources available as services, core
    provides all prerequisites to bootstrap the component tree.
    These prerequisites comprise services for creating protection domains,
    for managing address-space layouts, and for creating object identities.
   

   
    Core is almost free from policy. There are no configuration options.
    The only policy of core is the startup of the init component, to which core
    grants all available resources. Init, in turn, uses those resources to
    spawn further components according to its configuration.
   

   
    Section Dataspaces introduces dataspaces as containers of memory or
    memory-like resources. Dataspaces form the foundation for most of the core
    services described in the subsequent sections.
    The section is followed by the introduction of each individual service
    provided by core. In the following, a component that has established a
    session to such a service is called client. For example, a component that
    obtained a session to core's CPU service is a CPU client.
   

   
   
   Dataspaces

   
    
     A dataspace is an RPC object1 that resides in core and represents a contiguous
     physical address-space region with an arbitrary size. Its base address and
     size are subjected to the granularity of physical pages as dictated by the
     memory-management unit (MMU) hardware. Typically the granularity is 4 KiB.
    

    
     Dataspaces are created and managed via core's services.
     Because each dataspace is a distinct RPC object, the authority over the
     contained physical address range is represented by a capability and can
     thereby be delegated between components.
     Each component in possession of a dataspace capability can make the
     dataspace content visible in its local address space.
     Hence, by the means of
     delegating dataspace capabilities, components can establish shared memory.
    

    
     On Genode, only core deals with physical memory pages. All other components
     use dataspaces as a uniform abstraction for memory, memory-mapped I/O
     regions, and ROM modules.
    

   

   
   
   Region maps

   
    
     A region map1 represents the layout of a virtual address
     space. The size of the virtual address space is defined at its creation
     time. Region maps are created implicitly as part of a PD session (Section
     Protection domains (PD)) or
     manually via the RM service (Section Region-map management (RM)).
    

    
    
    Populating an address space

     
      The concept behind region maps is a generalization of the MMU's page-table
      mechanism. Analogously to how a page table is populated with physical page
      frames, a region map is populated with dataspaces.
      Under the hood, core uses the MMU's page-table mechanism as a cache for
      region maps.
      The exact way of how MMU translations are installed depends on the
      underlying kernel and is opaque to Genode components.
      On most base platforms, memory mappings are established in a lazy
      fashion by core's page-fault resolution mechanism described in Section
      Page-fault handling.
     

     
      A region-map client in possession of a dataspace capability is
      able to attach the dataspace to the region map.
      Thereby the content of the dataspace becomes visible within the region
      map's virtual address space.
      When attaching a dataspace to a region map, core selects an appropriate
      virtual address range that is not yet populated with dataspaces.
      Alternatively, the client can specify a designated virtual address.
      It also has the option to attach a mere window of the dataspace to the region
      map. Furthermore, the client can specify whether the content of the
      dataspace should be executable or not.
     

     
      The counterpart of the attach operation is the detach operation, which
      enables the region-map client to remove
      dataspaces from the region map by specifying a virtual address. Under the
      hood, this operation flushes the MMU mappings of the corresponding virtual
      address range so that the dataspace content becomes invisible.
     

     
      Note that a single dataspace may be attached to any number of region maps.
      A dataspace may also be attached multiple times to one region map. In this
      case, each attach operation populates a distinct region of the virtual
      address space.
     

   

   
   
   Access to boot modules (ROM)

   
    
     During the initial bootstrap phase of the machine, a boot loader loads the
     kernel's binary and additional chunks of data called boot modules into the
     physical memory. After those preparations, the boot loader passes control to
     the kernel.
     Examples of boot modules are the ELF images of the core component, the
     init component, the components created by init, and the configuration of the
     init component.
     Core makes each boot module available as a ROM session1. Because boot modules
     are read-only memory, they are generally called ROM modules.
     On session construction, the client specifies the name of the ROM module
     as session argument.
     Once created, the ROM session allows its client to obtain a ROM dataspace
     capability. Using this capability, the client can make the ROM module
     visible within its local address space.
     The ROM session interface is described in more detail in
     Section Read-only memory (ROM).
    

   

   
   
   Protection domains (PD)

   
    
     A protection domain (PD) corresponds to a unit of protection within the Genode
     system. Typically, there is a one-to-one relationship between a component and
     a PD session1. Each PD consists of a virtual memory address space,
     a capability space
     (Section Capability spaces, object identities, and RPC objects), and a
     budget of physical memory and capabilities.
     Core's PD service also plays the role of a broker for asynchronous notifications
     on kernels that lack the semantics of Genode's signalling API.
    

    
    
    Physical memory and capability allocation

     
      Each PD session contains quota-bounded allocators for physical memory and
      capabilities. At session-creation time, its quota is zero. To make an
      allocator functional, it must first receive quota from another already
      existing PD session, which is called the reference account. Once the
      reference account is defined, quota can be transferred back and forth between
      the reference account and the new PD session.
     

     
      Provided that the PD session is equipped with sufficient quota, the PD
      client can allocate RAM dataspaces from the PD session. The size of
      each RAM dataspace is defined by the client at the time of allocation.
      The location of the dataspace in physical memory is defined by core.
      Each RAM dataspace is physically
      contiguous and can thereby be used as DMA buffer by a user-level device
      driver. In order to set up DMA transactions, such a device driver can request
      the physical address of a RAM dataspace by invoking the dataspace capability.
     

     
      Closing a PD session destroys all dataspaces allocated from
      the PD session and restores the original quota. This implies that these
      dataspaces disappear in all components. The quota of a closed PD session
      is transferred to the reference account.
     

    
    
    Virtual memory and capability space

     
      At the hardware-level, the CPU isolates different virtual memory address
      spaces via a memory-management unit. Each domain is represented by a different
      page directory, or an address-space ID (ASID). Genode provides an abstraction
      from the underlying hardware mechanism in the form of region maps as
      introduced in Section Region maps. Each PD is readily equipped with three
      region maps. The address space represents the layout of the PD's virtual
      memory address space, the stack area represents the portion of the PD's
      virtual address space where stacks are located, and the linker area is
      designated for dynamically linked shared objects. The stack area and linker
      area are attached to the address space at the component initialisation time.
     

     
      The capability space is provided as a kernel mechanism. Note that not all
      kernels provide equally good mechanisms to implement Genode's capability model
      as described in Section Capability-based security. On kernels with support
      for kernel-protected object capabilities, the PD session interface allows
      components to create and manage kernel-protected capabilities.
      Initially, the PD's capability space is empty. However, the PD client can
      install a single capability - the parent capability - using the assign-parent
      operation at the creation time of the PD.
     

   

   
   
   Region-map management (RM)

   
    
     As explained in Section Protection domains (PD), each PD session is
     equipped with three region maps by default. The RM service allows
     components to create additional region maps manually. Such manually
     created region maps are also referred to as managed dataspaces.
     A managed dataspace is not backed by a range of physical addresses but
     its content is defined by its underlying region map.
     This makes region maps a generalization of nested page tables.
     A region-map client can obtain a dataspace capability for a given region map
     and use this dataspace capability in the same way as any other dataspace
     capability, i.e., attaching it to its local address space, or delegating
     it to other components.
    

    
     Managed dataspaces are used in two ways. First, they allow for the manual
     management of portions of a component's virtual address space. For example,
     the so-called stack area of a protection domain is a dedicated virtual-address range
     preserved for stacks. Between the stacks, the virtual address space must
     remain empty so that stack overflows won't silently corrupt data. This
     is achieved by using a dedicated region map that represents the complete
     stack area. This region map is attached as a dataspace to the
     component's virtual address space. When creating a new thread along with its
     corresponding stack, the thread's stack is not directly attached to the
     component's address space but to the stack area's region map. Another
     example is the virtual-address range managed by a dynamic linker to load
     shared libraries into.
    

    
     The second use of managed dataspaces is the provision of on-demand-populated
     dataspaces. A server may hand out dataspace capabilities that are backed by
     region maps to its clients. Once the client has attached such a dataspace to its
     address space and touches it's  content, the client triggers a page fault. Core
     responds to this page fault by blocking the client thread and delivering a
     notification to the server that created the managed dataspace along with
     the information about the fault address within the region map. The server can
     resolve this condition by attaching a dataspace with real backing store at the
     fault address, which prompts core to resume the execution of the faulted
     thread.
    

   

   
   
   Processing-time allocation (CPU)

   
    
     A CPU session1 is an allocator for processing time that allows for the creation,
     the control, and the destruction of threads of execution.
     At session-construction time, the affinity of a CPU session with CPU cores can
     be defined via session arguments.
    

    
     Once created, the session can be used to create, control, and kill threads.
     Each thread created via a CPU session is represented by a thread capability.
     The thread capability is used for subsequent thread-control operations.
     The most prominent thread-control operation is the start of the thread,
     which takes the thread's initial stack pointer and instruction pointer as
     arguments.
    

    
     During the lifetime of a thread, the CPU client can retrieve and manipulate
     the state of the thread. This includes the register state as well as the
     execution state (whether the thread is paused or running). Those operations
     are primarily designated for realizing user-level debuggers.
    

    
     To aid the graceful destruction of threads, the CPU client can issue a
     cancel-blocking operation, which causes the specified thread to cancel a
     current blocking operation such as waiting for an RPC response
     or the attempt to acquire a contended lock.
    

   

   
   
   Access to device resources (IO_MEM, IO_PORT, IRQ)

   
    
     Core's IO_MEM, IO_PORT, and IRQ services enable the realization of
     user-level device drivers as Genode components.
    

    
    
    Memory mapped I/O (IO_MEM)

     
      An IO_MEM session1 provides a dataspace representation for a non-memory part of
      the physical address space such as memory-mapped I/O regions or BIOS areas.
      In contrast to a memory block that is used for storing information, of which
      the physical location in memory is of no concern, a non-memory object has
      special semantics attached to its location within the physical address space.
      Its location is either fixed (by standard) or can be determined at runtime,
      for example by scanning the PCI bus for PCI resources. If the physical
      location of such a non-memory object is known, an IO_MEM session can be
      created by specifying the physical base address, the size, and the
      write-combining policy of the memory-mapped resource as session arguments.
      Once an IO_MEM session is created, the IO_MEM client can request a dataspace
      containing the specified physical address range.
     

     
      Core hands out each physical address range only once. Session requests for
      ranges that intersect with physical memory are denied. Even though the
      granularity of memory protection is limited by the MMU page size, the IO_MEM
      service accepts the specification of the physical base address and size at the
      granularity of bytes. The rationale behind this contradiction is the
      unfortunate existence of platforms that host memory-mapped resources of
      unrelated devices on the same physical page. When driving such devices from
      different components, each of those components requires access to its
      corresponding device. So the same physical page must be handed out to multiple
      components. Of course, those components must be trusted to not touch any
      portion of the page that is unrelated to its own device.
     

    
    
    Port I/O (IO_PORT)

     
      For platforms that rely on I/O ports for device access, core's IO_PORT service
      enables the fine-grained assignment of port ranges to individual components.
      Each IO_PORT session1 corresponds to the exclusive access right to a port range
      specified as session arguments. Core creates the new IO_PORT session only if
      the specified port range does not overlap with an already existing session.
      This ensures that each I/O port is driven by only one IO_PORT client at a
      time.
      The IO_PORT session interface resembles the physical I/O port access
      instructions.
      Reading from an I/O port can be performed via an 8-bit, 16-bit, or 32-bit access.
      Vice versa, there exist operations for writing to an I/O port via an 8-bit,
      16-bit, or 32-bit access.
      The read and write operations take absolute port addresses as arguments.
      Core performs the I/O-port operation only if the specified port address lies
      within the port range of the session.
     

    
    
    Reception of device interrupts (IRQ)

     
      Core's IRQ service enables device-driver components to respond to
      device interrupts. Each IRQ session1 corresponds to an interrupt.
      The physical interrupt number is specified as session argument.
      Each physical interrupt number can be specified by only one session.
      The IRQ session
      interface provides an operation to wait for the next interrupt.
      Only while the IRQ client is waiting for an interrupt, core unmasks the
      interrupt at the interrupt controller.
      Once the interrupt occurs, core wakes up the IRQ client and masks the
      interrupt at the interrupt controller until the driver has acknowledged the
      completion of the IRQ handling and waits for the next interrupt.
     

   

   
   
   Logging (LOG)

   
    
     The LOG service is used by the lowest-level system components such as the init
     component for printing diagnostic output.
     Each LOG session1 takes a label as session argument, which is used to prefix
     the output of this session.
     This enables developers to distinguish the output of different components with
     each component having a unique label.
     The LOG client transfers the to-be-printed characters as payload of plain RPC
     messages, which represents the simplest possible communication mechanism
     between the LOG client and core's LOG service.
    

   

   
   
   Event tracing (TRACE)

   
    
     The TRACE service provides a light-weight event-tracing facility. It is not
     fundamental to the architecture. However, as the service allows for the
     inspection and manipulation of arbitrary threads of a Genode system, TRACE
     sessions must not be granted to untrusted components.
    

   

  
  
  Component creation

   
    Each Genode component is made out of three basic ingredients:
   

   
    	PD

    	
     
      session representing the component's protection domain
     

    

    	ROM

    	
     
      session with the executable binary
     

    

    	CPU

    	
     
      session for creating the initial thread of the component
     

    

   


   	
     
     [image: img/creation_initial]
   
	
      Starting point for creating a new component

   


   
    It is the responsibility of the new component's parent to obtain those
    sessions. The initial situation of the parent is depicted in Figure
    img/creation_initial.
    The parent's memory budget is represented by the
    parent's PD (Section Protection Domains (PD)) session.
    The parent's virtual address space is represented by the region map contained
    in the parent's PD session.
    The parent's PD session was originally created at the parent's construction time.
    Along with the parent's CPU session, it forms
    the parent's so-called environment. The address space is populated
    with the parent's code (shown as red), the so-called
    stack area that hosts the stacks (shown as blue), and
    presumably several RAM dataspaces for the heap, the DATA segment,
    and the BSS segment. Those are shown as yellow.
   

   
   
   Obtaining the child's ROM and PD sessions

   
    
     The first step for creating a child component is obtaining the component's
     executable binary, e.g., by creating a session to a ROM service such as the
     one provided by core (Section Access to boot modules (ROM)). With the
     ROM session created, the parent can make the dataspace with the executable
     binary (i.e., an ELF binary) visible within its virtual address space by
     attaching the dataspace to its PD's region map. After this step, the parent is
     able to inspect the ELF header to determine the memory requirements for the
     binary's DATA and BSS segments.
    

    
     The next step is the creation of the child's designated PD session, which
     holds the memory and capability budgets the child will have at its disposal.
     The freshly created PD session has no budget though. In order to make the PD
     session usable, the parent has to transfer a portion of its own RAM quota to
     the child's PD session. As explained in Section Resource assignment, the
     parent registers its own PD session as the reference account for the child's
     PD session in order to become able to transfer quota back and forth
     between both PD sessions. Figure img/creation_rom_pd shows the situation.
    

    	
      
      [image: img/creation_rom_pd]
    
	
       The parent creates the PD session of the new child and obtains the child's executable

    


   

   
   
   Constructing the child's address space

   
    
     With the child's PD session equipped with a memory, the parent can construct
     the address space for the new child and populate it with memory allocated
     from the child's budget (Figure img/creation_pdsession).
     The address-space layout is represented as a region map that is part of each
     PD session (Section Protection domains (PD)).
     The first page of the address space is excluded such that
     any attempt by the child to de-reference a null pointer will cause a
     fault instead of silently corrupting memory. After its creation time, the
     child's region map is empty. It is up to the parent to populate the virtual
     address space with meaningful information by attaching dataspaces to the
     region map. The parent performs this procedure based on the information found
     in the ELF executable's header:
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       The parent creates and populates the virtual address space of the child using a new PD session (the parent's PD session is not depicted for brevity)

    


    
     	Read-only segments

     	
      
       For each read-only segment of the ELF binary, the parent attaches the
       corresponding portion of the ELF dataspace to the child's address space
       by invoking the attach operation on the child's region-map capability.
       By attaching a portion of the existing ELF dataspace to the new child's
       region map, no memory must be copied. If multiple instances of the same
       executable are created, the read-only segments of all instances refer to the
       same physical memory pages.
       If the segment contains the TEXT segment (the program code), the parent
       specifies a so-called executable flag to the attach operation. Core passes
       this flag to the respective kernel such that the corresponding page-table
       entries for the new components will be configured accordingly (by setting or
       clearing the non-executable bit in the page-table entries).
       Note that the propagation of this information (or the lack thereof) depends
       on the kernel used. Also note that not all hardware platforms distinguish
       executable from non-executable memory mappings.
      

     

     	Read-writable segments

     	
      
       In contrast to read-only segments, read-writable segments cannot be shared
       between components. Hence, each read-writable segment must be backed with
       a distinct copy of the segment data. The parent allocates the backing store
       for the copy from the child's PD session and thereby accounts the memory
       consumption on behalf of the child to the child's budget. For each
       segment, the parent performs the following steps:
      

      
       	
        
         Allocation of a RAM dataspace from the child's PD session. The size of the
         dataspace corresponds to the segment's memory size. The memory size
         may be higher than the size of the segment in the ELF binary (named
         file size). In particular, if the segment contains a DATA section
         followed by a BSS section, the file size corresponds to the size of the
         DATA section whereby the memory size corresponds to the sum of both
         sections. Core's PD service ensures that each freshly allocated RAM
         dataspace is guaranteed to contain zeros. Core's PD service returns
         a RAM dataspace capability as the result of the allocation operation.
        

       

       	
        
         Attachment of the RAM dataspace to the parent's virtual address space
         by invoking the attach operation on the parent's region map with the
         RAM dataspace capability as argument.
        

       

       	
        
         Copying of the segment content from the ELF binary's dataspace to the
         freshly allocated RAM dataspace. If the memory size of the segment is
         larger than the file size, no special precautions are needed as the
         remainder of the RAM dataspace is known to be initialized with zeros.
        

       

       	
        
         After filling the content of the segment dataspace, the parent no longer
         needs to access it. It can remove it from its virtual address space
         by invoking the detach operation on its own region map.
        

       

       	
        
         Based on the virtual segment address as found in the ELF header, the
         parent attaches the RAM dataspace to the child's virtual address space
         by invoking the attach operation on the child PD's region map with the
         RAM dataspace as argument.
        

       

      

     

    


    
     This procedure is repeated for each segment. Note that although the above
     description refers to ELF executables, the underlying mechanisms used to
     load the executable binary are file-format agnostic.
    

   

   
   
   Creating the initial thread
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       Creation of the child's initial thread

    


    
     With the virtual address space of the child configured, it is time to
     create the component's initial thread. Analogously to the child's PD
     session, the parent creates a CPU session
     (Section Processing-time allocation (CPU)) for the child.
     The parent may use session arguments to constrain the scheduling parameters
     (i.e., the priority) and the CPU affinity of the new child.
     Whichever session arguments are specified, the child's abilities will never
     exceed the parent's abilities. I.e., the child's priority is subjected to the
     parent's priority constraints.
     Once constructed, the CPU session can be used to create new threads by
     invoking the session's create-thread operation with the thread's designated
     PD as argument.
     Based on this association of the thread with its PD, core is able to respond to
     page faults triggered by the thread.
     The invocation of this operation results in a thread capability, which can be
     used to control the execution of the thread.
     Immediately after its creation, the thread remains inactive.
     In order to be executable, it first needs to be configured.
    

    
     As described in Section Component ownership, each PD has
     initially a single capability installed, which allows the child to communicate
     with its parent.
     Right after the creation of the PD for a new child, the parent can register
     a capability to a locally implemented RPC object as parent capability for the
     PD session.
     Now that the child's PD is equipped with an initial thread and a communication
     channel to its parent,
     it is the right time to kick off the execution of the
     thread by invoking the start operation on its thread capability. The start
     operation takes the initial program counter as argument,
     which corresponds to the program's entry-point
     address as found in the ELF header of the child's executable binary.
     Figure img/creation_thread illustrates the relationship between the
     PD session, the CPU session, and the parent capability. Note that neither the
     ROM dataspace containing the ELF binary nor the RAM dataspaces
     allocated during the ELF loading are visible in the parent's
     virtual address space any longer. After the initial loading of the ELF binary,
     the parent has detached those dataspaces from its own region map.
    

    
     The child starts its execution at the virtual address defined by the ELF
     entrypoint. It points to a short assembly
     routine that sets up the initial stack and calls the low-level C++ startup
     code. This code, in turn, initializes the C++ runtime (such as the exception
     handling) along with the component's local Genode environment. The environment
     is constructed by successively requesting the component's CPU and PD
     sessions from its parent. With the Genode environment in place, the startup
     code initializes the stack area, sets up the real stack for the initial
     thread within the stack area, and returns to the assembly startup
     code. The assembly code, in turn, switches the stack from the initial stack to
     the real stack and calls the program-specific C++ startup code. This code
     initializes the component's initial entrypoint and executes all global
     constructors before calling the component's construct function.
     Section Component-local startup code and linker scripts describes
     the component-local startup procedure in detail.
    

   

  
  
  Inter-component communication

   
    Genode provides three principle mechanisms for inter-component communication,
    namely synchronous remote procedure calls (RPC), asynchronous notifications, and
    shared memory.
    Section Synchronous remote procedure calls (RPC) describes synchronous RPC
    as the most prominent one. In addition to
    transferring information across component boundaries, the RPC mechanism
    provides the means for delegating capabilities and thereby authority
    throughout the system.
   

   
    The RPC mechanism closely resembles the semantics
    of a function call where the control is transferred from the caller to
    the callee until the function returns.
    As discussed in Section Client-server relationship, there are situations
    where the provider of information does not wish to depend on the recipient to
    return control. Such situations are addressed by the means of an asynchronous
    notification mechanism explained in Section Asynchronous notifications.
   

   
    Neither synchronous RPC nor asynchronous notifications are suitable for
    transferring large bulks of information between components. RPC messages
    are strictly bound to a small size and asynchronous notifications do not
    carry any payload at all. This is where shared memory comes into play.
    By sharing memory between components, large bulks of information
    can be propagated without the active participation of the kernel.
    Section Shared memory explains the procedure of establishing shared memory
    between components.
   

   
    Each of the three basic mechanisms is rarely found in isolation.
    Most inter-component interactions are a combination of these mechanisms.
    Section Asynchronous state propagation introduces a pattern for propagating
    state information by combining asynchronous notifications with RPC.
    Section Synchronous bulk transfer shows how synchronous RPC can be
    combined with shared memory to transfer large bulks of information in a
    synchronous way. Section Asynchronous bulk transfer - packet streams
    combines asynchronous notifications with shared memory to largely
    decouple producers and consumers of high-throughput data streams.
   

   
    \clearpage
   

   
   
   Synchronous remote procedure calls (RPC)

   
    
     Section Capability invocation introduced remote procedure calls (RPC)
     as Genode's fundamental mechanism to delegate authority between
     components.
     It introduced the terminology for RPC objects, capabilities, object
     identities, and entrypoints.
     It also outlined the flow of control between a client, the kernel, and a
     server during an RPC call.
     This section complements Section Capability invocation with the information
     of how the mechanism presents itself at the C++ language level.
     It first introduces the layered structure of the RPC mechanism and the notion
     of typed capabilities.
     After presenting the class structure of an RPC server, it shows how those
     classes interact when RPC objects are created and called.
    

    
    
    Typed capabilities

     	
       
       [image: img/rpc_layers]
     
	
        Layered architecture of the RPC mechanism

     


     
      Figure img/rpc_layers depicts the software layers of the RPC mechanism.
     

     
      	Kernel inter-process-communication (IPC) mechanism

      	
       
        At the lowest level, the kernel's IPC mechanism is used to transfer messages
        back and forth between client and server. The actual mechanism largely
        differs between the various kernels supported by Genode.
        Chapter Under the hood gives insights into the
        functioning of the IPC mechanism as used on specific kernels.
        Genode's capability-based security model is based on the presumption
        that the kernel protects object identities as kernel objects,
        allows user-level components to refer to kernel objects via capabilities,
        and supports the delegation of capabilities between components using
        the kernel's IPC mechanism.
        At the kernel-interface level, the kernel is not aware of language
        semantics like the C++ type system. From the kernel's point of view,
        an object identity merely exists and can be referred to, but has no type.
       

      

      	IPC library

      	
       
        The IPC library introduces a kernel-independent programming interface
        that is needed to implement the principle semantics of clients and servers.
        For each kernel supported by Genode, there exists a distinct IPC library
        that uses the respective kernel mechanism. The IPC library introduces the
        notions of untyped capabilities, message buffers,  IPC clients,
        and IPC servers.
       

       
        An untyped capability is the representation of a Genode capability at
        the C++ language level. It consists of the local name of the referred-to
        object identity as well as a means to manage the lifetime of the
        capability, i.e., a reference counter. The exact representation of an
        untyped capability depends on the kernel used.
       

       
        A message buffer is a statically sized buffer that carries the payload
        of an IPC message. It distinguishes two types of payload, namely raw data
        and capabilities. Payloads of both kinds can be simultaneously present.
        A message buffer can carry up to 1 KiB of raw data and up to four
        capabilities.
        Prior to issuing the kernel IPC operation, the IPC library translates the
        message-buffer content to the format understood by the kernel's IPC
        operation.
       

       
        The client side of the communication channel executes an IPC call
        operation with a destination capability, a send buffer, and a receive buffer
        as arguments.
        The send buffer contains the RPC function arguments, which can comprise
        plain data as well as capabilities.
        The IPC library transfers these arguments to the server via a
        platform-specific kernel operation and waits for the server's response.
        The response is returned to the caller as new content of the receive
        buffer.
       

       
        At the server side of the communication channel, an entrypoint thread
        executes the IPC reply and IPC reply-and-wait operations to interact
        with potentially many clients.
        Analogously to the client, it uses two message buffers, a receive buffer
        for incoming requests and a send buffer for delivering the reply of the last
        request.
        For each entrypoint, there exists an associated untyped
        capability that is created with the entrypoint. This capability
        and can be combined with an IPC client object to perform calls to the
        server.
        The IPC reply-and-wait operation delivers the content of the reply buffer
        to the last caller and then waits for a new request using a platform-specific
        kernel operation. Once unblocked by the kernel, it returns the arguments
        for the new request in the request buffer.
        The server does not obtain any form of client identification along with
        an incoming message that could be used to implement server-side
        access-control policies.
        Instead of performing access control based on a client identification in the
        server, access control is solely performed by the kernel on the invocation
        of capabilities.
        If a request was delivered to the server, the client has  by definition 
        a capability for communicating with the server and thereby the authority
        to perform the request.
       

      

      	RPC stub code

      	
       
        The RPC stub code complements the IPC library with the semantics of RPC
        interfaces and RPC functions. An RPC interface is an abstract C++ class
        with the declarations of the functions callable by RPC clients.
        Thereby each RPC interface is represented as a C++ type.
        The declarations are accompanied with annotations that allow the C++
        compiler to generate the so-called RPC stub code on both the client side and
        server side. Genode uses
        C++ templates to generate the stub code, which avoids the crossing of a
        language barrier when designing RPC interfaces and alleviates the need for
        code-generating tools in addition to the compiler.
       

       
        The client-side stub code translates C++ method calls to IPC-library
        operations. Each RPC function of an
        RPC interface has an associated opcode (according to the order of RPC
        functions). This opcode along with the method arguments are inserted
        into the IPC client's send buffer. Vice versa, the stub code translates
        the content of the IPC client's receive buffer to return values of the
        method invocation.
       

       
        The server-side stub code implements the so-called dispatch function,
        which takes the IPC server's receive buffer, translates the message
        into a proper C++ method call, calls the corresponding server-side function
        of the RPC interface, and translates the function results into the
        IPC server's send buffer.
       

      

      	RPC object and client object

      	
       
        Thanks to the RPC stub code, the server-side implementation of an RPC
        object comes down to the implementation of the abstract interface of the
        corresponding RPC interface.
        When an RPC object is associated with an entrypoint, the entrypoint creates
        a unique capability for the given RPC object.
        RPC objects are typed with their corresponding RPC interface. This C++ type
        information is propagated to the corresponding capabilities. For example,
        when associating an RPC object that implements the LOG-session interface
        with an entrypoint, the resulting capability is a LOG-session capability.
       

       
        This capability represents
        the authority to invoke the functions of the RPC object.
        On the client side, the client object plays the role of a proxy of the RPC
        object within the client's component.
        Thereby, the client becomes able to interact with the RPC object in a
        natural manner.
       

      

      	Sessions and connections

      	
       
        Section Services and sessions introduced sessions between client and
        server components as the basic building blocks of system composition.
        At the server side each session is represented by an RPC object that
        implements the session interface. At the client side, an open session
        is represented by a connection object. The connection object encapsulates
        the session arguments and also represents a client object to interact
        with the session.
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        Fundamental capability types

     


     
      As depicted in Figure img/rpc_layers, capabilities are associated with
      types on all levels above the IPC library.
      Because the IPC library is solely
      used by the RPC stub code but not at the framework's API level,
      capabilities appear as being C++ type safe, even across component boundaries.
      Each RPC interface implicitly defines a corresponding capability type.
      Figure img/capability_types shows the inheritance graph of Genode's
      most fundamental capability types.
     

    
    
    Server-side class structure

     	
       
       [image: img/rpc_classes]
     
	
        Server-side structure of the RPC mechanism

     


     
      Figure img/rpc_classes gives on overview of the C++ classes that are
      involved at the server side of the RPC mechanism. As described in
      Section Capability invocation,
      each entrypoint maintains a so-called object pool. The object pool contains
      references to RPC objects associated with the entrypoint. When receiving
      an RPC request along with the local name of the invoked object identity,
      the entrypoint uses the object pool to lookup the corresponding RPC object.
      As seen in the figure, the RPC object is a class template parametrized with
      its RPC interface. When instantiated, the dispatch function is generated
      by the C++ compiler according to the RPC interface.
     

     
      \clearpage
     

    
    
    RPC-object creation

     
      Figure img/new_rpc_obj_seq shows the procedure of creating a new RPC object.
      The server component has already created an entrypoint, which, in turn,
      created its corresponding object pool.
     

     	
       
       [image: img/new_rpc_obj_seq]
     
	
        Creation of a new RPC object

     


     
      	
       
        The server component creates an instance of an RPC object.
        "RPC object" denotes an object that inherits the RPC object class
        template typed with the RPC interface and that implements the virtual
        functions of this interface. By inheriting the RPC object class template,
        it gets equipped with a dispatch function for the given RPC interface.
       

       
        Note that a single entrypoint can be used to manage any number of RPC
        objects of arbitrary types.
       

      

      	
       
        The server component associates the RPC object with the entrypoint by
        calling the entrypoint's manage function with the RPC object as argument.
        The entrypoint responds to this call by allocating a new object identity
        using a session to core's PD service (Section Protection domains (PD)).
        For allocating the new object identity, the entrypoint specifies the
        untyped capability of its IPC server as argument.
        Core's PD service responds to the request by instructing the kernel to
        create a new object identity associated with the untyped capability.
        Thereby, the kernel creates a new capability that is derived from the
        untyped capability.
        When invoked, the derived capability refers to the same IPC server as the
        original untyped capability.
        But it represents a distinct object identity. The IPC server retrieves
        the local name of this object identity when called via the derived
        capability.
        The entrypoint stores the association of the derived capability
        with the RPC object in the object pool.
       

      

      	
       
        The entrypoint hands out the derived capability as return value of the
        manage function. At this step, the derived capability is converted into
        a typed capability with its type corresponding to the type of the RPC
        object that was specified as argument. This way, the link between the
        types of the RPC object and the corresponding capability is preserved
        at the C++ language level.
       

      

      	
       
        The server delegates the capability to another component, e.g., as
        payload of a remote procedure call. At this point, the client receives
        the authority to call the RPC object.
       

      

     

    
    
    RPC-object invocation

     
      Figure img/call_rpc_obj_seq shows the flow of execution when a client
      calls an RPC object by invoking a capability.
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        Invocation of an RPC object

     


     
      	
       
        The client invokes the given capability using an instance of an RPC client
        object, which uses the IPC library to invoke the kernel's IPC mechanism.
        The kernel delivers the request to the IPC server that belongs to the
        invoked capability and wakes up the corresponding entrypoint. On reception
        of the request, the entrypoint obtains the local name of the invoked
        object identity.
       

      

      	
       
        The entrypoint uses the local name of the invoked object identity as a key
        into its object pool to look up the matching RPC object. If the lookup
        fails, the entrypoint replies with an error.
       

      

      	
       
        If the matching RPC object was found, the entrypoint calls the
        RPC object's dispatch method. This method is implemented by the
        server-side stub code. It converts the content of the receive buffer of the
        IPC server to a method call. I.e., it obtains the opcode of the RPC function
        from the receive buffer to decide which method to call, and supplies
        the arguments according to the definition in the RPC interface.
       

      

      	
       
        On the return of the RPC function, the RPC stub code populates the send
        buffer of the IPC server with the function results and invokes the kernel's
        reply operation via the IPC library. Thereby, the entrypoint becomes ready
        to serve the next request.
       

      

      	
       
        When delivering the reply to the client, the kernel resumes the execution
        of the client, which can pick up the results of the RPC call.
       

      

     

     
      \clearpage
     

   

   
   
   Asynchronous notifications

   
    
     The synchronous RPC mechanism described in the previous section is not
     sufficient to cover all forms of inter-component interactions. It shows
     its limitations in the following situations.
    

    
     	Waiting for multiple conditions

     	
      
       In principle, the RPC mechanism can be used by an RPC client to block
       for a condition at a server. For example, a timer server could provide
       a blocking sleep function that, when called by a client, blocks the client
       for a certain amount of time. However, if the client wanted to respond to
       multiple conditions such as a timeout, incoming user input, and network
       activity, it would need to spawn one thread for each condition where each
       thread would block for a different condition. If one condition triggers, the
       respective thread would resume its execution and respond to the condition.
       However, because all threads could potentially be woken up independently
       from each other  as their execution depends only on their respective
       condition  they need to synchronize access to shared state.
       Consequently, components that need to respond to multiple conditions
       would not only waste threads but also suffer from synchronization overhead.
      

      
       At the server side, the approach of blocking RPC calls is equally bad
       in the presence of multiple clients. For example, a timer service with
       the above outlined blocking interface would need to spawn one thread per
       client.
      

     

     	Signaling events to untrusted parties

     	
      
       With merely synchronous RPC, a server cannot deliver sporadic events to
       its clients. If the server wanted to inform one of its clients about such
       an event, it would need to act as a client itself by performing an RPC call to
       its own client. However, by performing an RPC call, the caller
       passes the control of execution to the callee. In the case of a server
       that serves multiple clients, it would put the availability of the server
       at the discretion of all its clients, which is unacceptable.
      

      
       A similar situation is the interplay between a parent and a child where
       the parent does not trust its child but still wishes to propagate sporadic
       events to the child.
      

     

    


    
     The solution to those problems is the use of asynchronous notifications,
     also named signals.
     Figure img/signal_seq shows the interplay between two components.
     The component labeled as signal handler responds to potentially many
     external conditions propagated as signals. The component labeled as signal
     producer triggers a condition. Note that both can be arbitrary components.
    

    
     \clearpage
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       Interplay between signal producer and signal handler

    


    
    
    Signal-context creation and delegation

     
      The upper part of Figure img/signal_seq depicts the steps needed by a
      signal handler to become able to receive asynchronous notifications.
     

     
      	
       
        Each Genode component is equipped with at least one initial entrypoint that
        responds to incoming RPC requests as well as asynchronous notifications.
        Similar to how it can handle requests for an arbitrary number of RPC objects,
        it can receive signals from many different sources.
        Within the signal-handler component,
        each source is represented as a so-called signal context. A component
        that needs to respond to multiple conditions creates one signal context
        for each condition. In the figure, a signal context "c" is created.
       

      

      	
       
        The signal-handler component associates the signal context with its
        entrypoint via the manage method.
        Analogous to the way how RPC objects are associated with entrypoints,
        the manage method returns a capability for the signal context.
        Under the hood, the entrypoint uses core's PD service to create
        this kind of capability.
       

      

      	
       
        As for regular capabilities, a signal-context capability can be delegated
        to other components. Thereby, the authority to trigger signals for the
        associated context is delegated.
       

      

     

    
    
    Triggering signals

     
      The lower part of Figure img/signal_seq illustrates the use of a
      signal-context capability by the signal producer.
     

     
      	
       
        Now in possession of the signal-context capability, the signal producer
        creates a so-called signal transmitter for the capability.
        The signal transmitter can be used to trigger a signal by calling the
        submit method. This method returns immediately. In contrast to
        a remote procedure call, the submission of a signal is a fire-and-forget
        operation.
       

      

      	
       
        At the time when the signal producer submitted the first signal, the
        signal handler is not yet ready to handle them. It is still busy with other
        things.
        Once the signal handler becomes ready to receive a new signal, the
        pending signal is delivered, which triggers the execution of the
        corresponding signal-handler method.
        Note that signals are not buffered. If signals are triggered at a high
        rate, multiple signals may result in only a single execution of the
        signal handler. For this reason, the handler cannot infer the number
        of events from the number of signal-handler invocations. In situations
        where such information is needed, the signal handler must retrieve it
        via another mechanism such as an RPC call to query the most current
        status of the server that produced the signals.
       

      

      	
       
        After handling the first batch of signals, the signal handler component
        blocks and becomes ready for another signal or RPC request.
        This time, no signals are immediately pending. After
        a while, however, the signal producer submits another signal, which
        eventually triggers another execution of the signal handler.
       

      

     

     
      In contrast to remote procedure calls, signals carry no payload. If signals
      carried any payload, this payload would need to be buffered somewhere.
      Regardless of where this information is buffered, the buffer could overrun
      if signals are submitted at a higher rate than handled. There might be
      two approaches to deal with this situation. The first option would be to
      drop the payload once the buffer overruns, which would make the mechanism
      indeterministic, which is hardly desirable. The second option would be
      to sacrifice the fire-and-forget semantics at the producer side, blocking
      the producer when the buffer is full. However, this approach would put the
      liveliness of the producer at the whim of the signal handler. Consequently,
      signals are void of any payload.
     

     
      \clearpage
     

   

   
   
   Shared memory

   
    	
      
      [image: img/shared_memory_seq]
    
	
       Establishing shared memory between client and server. The server interacts with core's PD service. Both client and server interact with the region maps of their respective PD sessions at core.

    


    
     By sharing memory between components, large amounts of information can be
     propagated across protection-domain boundaries without the active involvement of
     the kernel.
    

    
     Sharing memory between components raises a number of questions.
     First, Section Resource trading explained that physical memory resources
     must be explicitly assigned to components either by their respective parents
     or by the means of resource trading. This raises the question of which
     component is bound to pay for the memory shared between multiple components.
     Second, unlike traditional operating systems where different programs can
     refer to globally visible files and thereby establish shared memory by
     mapping a prior-agreed file into their respective virtual memory spaces, Genode
     does not have a global name space. How do components refer to the to-be-shared
     piece of memory?
     Figure img/shared_memory_seq answers these questions showing the sequence of
     shared-memory establishment between a server and its client. The diagram
     depicts a client, core, and a server.
     The notion of a client-server relationship is intrinsic for the shared-memory
     mechanism.
     When establishing shared memory between components, the component's roles as
     client and server must be clearly defined.
    

    
     	
      
       The server interacts with core's PD service to allocate a new RAM dataspace.
       Because the server uses its own PD session for that allocation, the
       dataspace is paid for by the server. At first glance, this seems contradictory
       to the principle that clients should have to pay for using
       services as discussed in
       Section Trading memory between clients and servers.
       However, this is not the case. By establishing the client-server
       relationship, the client has transferred a budget of RAM to the server
       via the session-quota mechanism.
       So the client already paid for the memory. Still, it is the server's
       responsibility to limit the size of the allocation to the client's session
       quota.
      

      
       Because the server allocates the dataspace, it is the owner of the
       dataspace. Hence, the lifetime of the dataspace is controlled by the
       server.
      

      
       Core's PD service returns a dataspace capability as the result of the
       allocation.
      

     

     	
      
       The server makes the content of the dataspace visible in its virtual
       address space by attaching the dataspace within the region map of its
       PD session. The server
       refers to the dataspace via the dataspace capability as returned from the
       prior allocation.
       When attaching the dataspace to the server's region map, core's PD service
       maps the dataspace content at a suitable virtual-address range that is
       not occupied with existing mappings and returns the base
       address of the occupied range to the server.
       Using this base address and the known dataspace size, the server can
       safely access the dataspace content by reading from or writing to its virtual
       memory.
      

     

     	
      
       The server delegates the authority to use the dataspace to the client.
       This delegation can happen in different ways, e.g., the client could
       request the dataspace capability via an RPC function at the server.
       But the delegation could also involve further components that transitively
       delegate the dataspace capability. Therefore, the delegation operation is
       depicted as a dashed line.
      

     

     	
      
       Once the client has obtained the dataspace capability, it can use the region
       map of its own PD session to make the dataspace content visible in its
       address space. Note that even though both client and server use core's PD
       service, each component uses a different session.
       Analogous to the server, the client receives a client-local address
       within its virtual address space as the result of the attach operation.
      

     

     	
      
       After the client has attached the dataspace within its region map,
       both client and server can access the shared memory using their respective
       virtual addresses.
      

     

    

    
     In contrast to the server, the client is not in control over the lifetime of
     the dataspace.
     In principle, the server, as the owner of the dataspace, could free the
     dataspace at its PD session at any time and thereby revoke the corresponding
     memory mappings in all components that attached the dataspace.
     The client has to trust the server with respect to its liveliness, which
     is consistent with the discussion in Section Client-server relationship.
     A well-behaving server should tie the lifetime of a shared-memory dataspace
     to the lifetime of the client session. When the server frees the dataspace
     at its PD session, core implicitly detaches the dataspace from all
     region maps. Thereby the dataspace will become inaccessible to the client.
    

   

   
   
   Asynchronous state propagation

   
    
     In many cases, the mere information that a signal occurred is insufficient
     to handle the signal in a meaningful manner. For example, a component that
     registers a timeout handler at a timer server will eventually receive a
     timeout. But in order to handle the timeout properly, it needs to know the
     actual time. The time could not be delivered along with the timeout because
     signals cannot carry any payload. But the timeout handler may issue a
     subsequent RPC call to the timer server for requesting the time.
    

    
     Another example of this combination of asynchronous notifications and
     remote procedure calls is the resource-balancing protocol described in Section
     Dynamic resource balancing.
    

   

   
   
   Synchronous bulk transfer

   
    
     The synchronous RPC mechanism described in
     Section Synchronous remote procedure calls (RPC) enables components
     to exchange information via a kernel operation. In contrast to shared
     memory, the kernel plays an active role by copying information (and
     delegating capabilities) between the communication partners.
     Most kernels impose a restriction onto the maximum message size.
     To comply with all kernels supported by Genode, RPC messages must not exceed
     a size of 1 KiB.
     In principle, larger payloads could be transferred as a sequence
     of RPCs. But since each RPC implies the costs of two context switches, this
     approach is not suitable for transferring large bulks of data. But by combining
     synchronous RPC with shared memory, these costs can be mitigated.
    

    	
      
      [image: img/sync_bulk_seq]
    
	
       Transferring bulk data by combining synchronous RPC with shared memory

    


    
     Figure img/sync_bulk_seq shows the procedure of transferring large bulk
     data using shared memory as a communication buffer while using synchronous
     RPCs for arbitrating the use of the buffer.
     The upper half of the figure depicts the setup phase that needs to be performed
     only once. The lower half exemplifies an operation where the client transfers
     a large amount of data to the server, which processes the data before
     transferring a large amount of data back to the client.
    

    
     	
      
       At session-creation time, the server allocates the dataspace, which
       represents the designated communication buffer.
       The steps resemble those described in Section Shared memory.
       The server uses session quota provided by the client for the allocation.
       This way, the client is able to aid the dimensioning of the dataspace by
       supplying an appropriate amount of session quota to the server.
       Since the server performed the allocation, the server is in control of the
       lifetime of the dataspace.
      

     

     	
      
       After the client established a session to the server, it initially queries
       the dataspace capability from the server using a synchronous RPC and
       attaches the dataspace to its own address space. After this step, both
       client and server can read and write the shared communication buffer.
      

     

     	
      
       Initially the client plays the role of the user of the dataspace.
       The client writes the bulk data into the dataspace. Naturally, the maximum
       amount of data is limited by the dataspace size.
      

     

     	
      
       The client performs an RPC call to the server. Thereby, it hands over the
       role of the dataspace user to the server. Note that this handover is not
       enforced. The client's PD retains the right to access the dataspace, i.e.,
       by another thread running in the same PD.
      

     

     	
      
       On reception of the RPC, the server becomes active. It reads and processes
       the bulk data, and writes its results to the dataspace. The server must not
       assume to be the exclusive user of the dataspace. A misbehaving client
       may change the buffer content at any time. Therefore, the server must take
       appropriate precautions. In particular, if the data must be validated at
       the server side, the server must copy the data from the shared dataspace to
       a private buffer before validating and using it.
      

     

     	
      
       Once the server has finished processing the data and written the results
       to the dataspace, it replies to the RPC. Thereby, it hands back the role
       of the user of the dataspace to the client.
      

     

     	
      
       The client resumes its execution with the return of the RPC call, and
       can read the result of the server-side operation from the dataspace.
      

     

    

    
     The RPC call may be used for carrying control information. For example, the
     client may provide the amount of data to process, or the server may provide
     the amount of data produced.
    

   

   
   
   Asynchronous bulk transfer - packet streams

   
    
     The packet-stream interface complements the facilities for the synchronous
     data transfer described in Sections Synchronous remote procedure calls (RPC)
     and Synchronous bulk transfer with a mechanism that carries payload over a
     shared memory block and employs an asynchronous data-flow protocol.
     It is designed for large bulk payloads such as network traffic, block-device
     data, video frames, and USB URB payloads.
    

    	
      
      [image: img/packet_stream]
    
	
       Life cycle of a data packet transmitted over the packet-stream interface

    


    
     As illustrated in Figure img/packet_stream, the communication buffer
     consists of three parts: a submit queue, an acknowledgement queue, and a
     bulk buffer.
     The submit queue contains packets generated by the source to be processed
     by the sink. The acknowledgement queue contains packets that are processed
     and acknowledged by the sink. The bulk buffer contains the actual payload.
     The assignment of packets to bulk-buffer regions is performed by the
     source.
    

    
     A packet is represented by a packet descriptor that refers to a portion
     of the bulk buffer and contains additional control
     information. Such control information may include an opcode and further
     arguments interpreted at the sink to perform an operation on the supplied
     packet data.
     Either the source or the sink is in charge of handling a given packet at a
     given time. At the points 1, 2, and 5, the packet is owned by the
     source. At the points 3 and 4, the packet is owned by the sink. Putting a
     packet descriptor in the submit or acknowledgement queue represents a
     handover of responsibility.
     The life cycle of a single packet looks as follows:
    

    
     	
      
       The source allocates a region of the bulk buffer for storing the packet
       payload (packet alloc). It then requests the local pointer to
       the payload (packet content) and fills the packet with data.
      

     

     	
      
       The source submits the packet to the submit queue (submit packet).
      

     

     	
      
       The sink requests a packet from the submit queue (get packet),
       determines the local pointer to the payload (packet content),
       and processes the contained data.
      

     

     	
      
       After having finished the processing of the packet, the sink acknowledges
       the packet (acknowledge packet), placing the packet into the
       acknowledgement queue.
      

     

     	
      
       The source reads the packet from the acknowledgement queue and releases
       the packet (release packet). Thereby, the region of the bulk buffer
       that was used by the packet becomes marked as free.
      

     

    

    
     This protocol has four corner cases that are handled by signals:
    

    
     	Submit queue is full

     	
      
       when the source is trying to submit a new packet.
       In this case, the source blocks and waits for the sink to remove packets
       from the submit queue. If the sink observes such a condition (when it
       attempts to get a packet from a full submit queue), it delivers a
       ready-to-submit signal to wake up the source.
      

     

     	Submit queue is empty

     	
      
       when the sink tries to obtain a packet from an
       empty submit queue, it may block. If the source places a
       packet into an empty submit queue, it delivers a packet-avail
       signal to wake up the sink.
      

     

     	Acknowledgement queue is full

     	
      
       when the sink tries to acknowledge a packet
       at a saturated acknowledgement queue, the sink needs to wait until the source
       removes an acknowledged packet from the acknowledgement queue. The source
       notifies the sink about this condition by delivering a ready-to-ack
       signal. On reception of the signal, the sink wakes up and proceeds to
       submit packets into the acknowledgement queue.
      

     

     	Acknowledgement queue is empty

     	
      
       when the source tries to obtain an
       acknowledged packet (get acked packet) from an empty acknowledgement
       queue. In this case, the source may block until the sink places another
       acknowledged packet into the empty acknowledgement queue and delivers an
       ack-avail signal.
      

     

    


    
     If bidirectional data exchange between a client and a server is desired,
     there are two approaches:
    

    
     	One stream of operations

     	
      
       If data transfers in either direction are triggered by the client only, a
       single packet stream where the client acts as the source and
       the server represents the sink can accommodate transfers in both directions.
       For example, the block session interface (Section Block) represents read
       and write requests as packet descriptors. The allocation of the operation's
       read or write buffer within the bulk buffer is performed by the client,
       being the source of the stream of operations.
       For write operations, the client populates the write buffer with the
       to-be-written information before submitting the packet.
       When the server processes the incoming packets, it distinguishes the
       read and write operations using the control information given in the
       packet descriptor. For a write operation, it processes the information
       contained in the packet. For a read operation, it populates the packet
       with new information before acknowledging the packet.
      

     

     	Two streams of data

     	
      
       If data transfers in both directions can be triggered independently from
       client and server, two packet streams can be used. For example, the
       NIC session interface (Section NIC) uses one packet stream for ingoing
       and one packet stream for outgoing network traffic. For outgoing traffic,
       the client plays the role of the source. For incoming traffic, the
       server (such as a NIC driver) is the source.
      

     

    


   



Genode OS Framework Foundations

 
 
 Components

  
   The architecture introduced in Chapter Architecture clears the way to
   compose sophisticated systems out of many building blocks. Each building
   block is represented by an individual component that resides in a dedicated
   protection domain and interacts with other components in a well-defined manner.
   Those components do not merely represent applications but all typical
   operating-system functionalities.
  

  
   Components can come in a large variety of shape and form.
   Compared to a monolithic operating-system kernel, a component-based operating
   system challenges the system designer by enlarging the design space with the
   decision of the functional scope of each component and thereby the granularity
   of componentization. This decision depends on several factors:
  

  
   	Security

   	
    
     The smaller a component, the lower the risk for bugs and vulnerabilities.
     The more rigid a component's interfaces, the smaller its attack surface
     becomes.
     Hence, the security of a complex system function can potentially be vastly
     improved by splitting it into a low-complexity component that encapsulates
     the security-critical part and a high-complexity component that is
     uncritical for security.
    

   

   	Performance

   	
    
     The split of functionality into multiple components introduces
     inter-component communication and thereby context-switch overhead.
     If a functionality is known to be performance critical, such a split
     should clearly be motivated by a benefit for security.
    

   

   	Reusability

   	
    
     Componentization can be pursued to improve reusability while sometimes
     disregarding performance considerations at the same time.  However,
     reusability can also be achieved by
     moving functionality into libraries that can easily be reused by linking
     them directly against library-using components. By using a dynamic linker,
     linking can even happen at run time, which yields the same flexibility
     as the use of multiple distinct components. Therefore, the split of
     functionality into multiple components for the sole sake of modularization
     has to be questioned.
    

   

  


  
   Sections Device drivers, Protocol stacks, Resource multiplexers, and
   Runtime environments and applications aid the navigation within the
   componentization design space by discussing the different roles a component
   can play within a Genode system.
   This can be the role of a device driver, protocol stack, resource
   multiplexer, runtime environment, and that of an application. By
   distinguishing those roles, it becomes possible to assess the possible
   security implications of each individual component.
  

  
   The versatility of a component-based system does not come from the
   existence of many components alone. Even more important is the
   composability of components. Components can be combined only if their
   interfaces match. To maximize composability, the number of interfaces
   throughout the system should be as low as possible, and all interfaces
   should be largely orthogonal to each other.
   Section Common session interfaces reviews Genode's common session
   interfaces.
  

  
   Components can be used in different ways depending on their configuration and
   their position within the component tree. Section Component configuration
   explains how a component obtains and processes its configuration.
   Section Component composition discusses the most prominent options of
   composing components.
  

  
  
  Device drivers

   
    A device driver translates a device interface to a Genode session interface.
    Figure img/device_driver illustrates the typical role of a device driver.
   

   	
     
     [image: img/device_driver]
   
	
      A network device driver provides a NIC service to a single client and uses core's IO-MEM and IRQ services to interact with the physical network adaptor.

   


   
    The device interface is defined by the device vendor and typically
    comprises the driving of state machines of the device, the
    notification of device-related events via interrupts, and the means to
    transfer data from and to the device.
    A device-driver component accesses the device interface via sessions to the
    core services IO_MEM, IO_PORT, and IRQ as described in
    Section Access to device resources (IO_MEM, IO_PORT, IRQ).
   

   
    In general, a physical device cannot safely be driven by multiple users at the
    same time. If multiple users accessed one device concurrently, the device
    state would eventually become inconsistent.
    A device driver should not attempt to multiplex a hardware device.
    Instead, to keep its complexity low, it should act as a server that serves
    only a single client per physical device.
    Whereas a device driver for a simple device usually accepts only one client,
    a device driver for a complex device with multiple sub devices (such as
    a USB driver) may hand out each sub device to a different client.
   

   
    A device driver should be largely void of built-in policy. If it merely
    translates the interface of a single device to a session interface, there is
    not much room for policy anyway. If, however, a device driver hands out
    multiple sub devices to different clients, the assignment of sub devices
    to clients must be subjected to a policy. In this case, the device driver
    should obtain policy information from its configuration as provided by
    the driver's parent.
   

   
   
   Platform driver

   
    
     There are three problems that are fundamentally important for running an
     operating system on modern hardware but that lie outside the scope of an
     ordinary device driver because they affect the platform as a whole rather
     than a single device. Those problems are the enumeration of devices, the
     discovery of interrupt routing, and the initial setup of the platform.
    

    
    
    Problem 1: Device enumeration

     
      Modern hardware platforms are rather complex and vary a lot. For example,
      the devices attached to the PCI bus of a PC are usually not known at the
      build time of the system but need to be discovered at run time. Technically,
      each individual device driver could probe its respective device at the
      PCI bus. But in the presence of multiple drivers, this approach would hardly
      work. First, the configuration interface of the PCI bus is a device itself.
      The concurrent access to the PCI configuration interface by multiple drivers
      would ultimately yield undefined behaviour. Second, for being able to interact
      directly with the PCI configuration interface, each driver would need to
      carry with it the functionality to interact with PCI.
     

    
    
    Problem 2: Interrupt routing

     
      On PC platforms with multiple processors, the use of legacy interrupts as
      provided by the Intel 8259 programmable interrupt controller (PIC) is not
      suitable because there is no way to express the
      assignment of interrupts to CPUs. To overcome the limitations of the PIC,
      Intel introduced the Advanced Programmable Interrupt Controller (APIC). The
      APIC, however, comes with a different name space for interrupt numbers, which
      creates an inconsistency between the numbers provided by the PCI configuration
      (interrupt lines) and interrupt numbers as understood by the APIC. The
      assignment of legacy interrupts to APIC interrupts is provided by the
      Advanced Configuration and Power Interface (ACPI) tables.
      Consequently, in order to support multi-processor PC platforms, the operating
      system needs to interpret those tables. Within a component-based system, we
      need to answer the question of which component is responsible to interpret the
      ACPI tables and how this information is applied to individual device
      drivers.
     

    
    
    Problem 3: Initial hardware setup

     
      In embedded systems, the interaction of the SoC (system on chip) with its surrounding
      peripheral hardware is often not fixed in hardware but rather a
      configuration issue. For example, the power supply and clocks of certain
      peripherals may be enabled by speaking an I2C protocol with a separate
      power-management chip. Also, the direction and polarity of the general-purpose
      I/O pins depends largely on the way how the SoC is used. Naturally, such
      hardware setup steps could be performed by the kernel. But this would require
      the kernel to become aware of potentially complex platform intrinsics.
     

    
    
    Central platform driver

     
      The natural solution to these problems is the introduction of a so-called
      platform driver, which encapsulates the peculiarities outlined above. On PC
      platforms, the role of the platform driver is executed by the ACPI driver. The
      ACPI driver provides an interface to the PCI bus in the form of a PCI service.
      Device drivers obtain the information about PCI devices by creating a PCI
      session at the ACPI driver. Furthermore, the ACPI driver provides an IRQ
      service that transparently applies the interrupt routing based on the
      information provided by the ACPI tables. Furthermore, the ACPI driver provides
      the means to allocate DMA buffers, which is further explained in Section
      Direct memory access (DMA) transactions.
     

     
      On ARM platforms, the corresponding component is named platform driver
      and provides a so-called platform service. Because of the large variety of
      ARM-based SoCs, the session interface for this service differs from platform
      to platform.
     

   

   
   
   Interrupt handling

   
    
     Most device drivers need to respond to sporadic events produced by the
     device and propagated to the CPU as interrupts. In Genode, a device-driver
     component obtains device interrupts via core's IRQ service introduced in
     Section Access to device resources (IO_MEM, IO_PORT, IRQ). On PC platforms,
     device drivers usually do not use core's IRQ service directly but rather
     use the IRQ service provided by the platform driver
     (Section Platform driver).
    

   

   
   
   Direct memory access (DMA) transactions

   
    
     Devices that need to transfer large amounts of data usually support a means
     to issue data transfers from and to the system's physical memory
     without the active participation of the CPU. Such transfers are called
     direct memory access (DMA) transactions. DMA transactions relieve the CPU
     from actively copying data between device registers and memory, optimize
     the throughput of the system bus by the effective use of burst transfers, and
     may even be used to establish direct data paths between devices.
     However, the benefits of DMA come at the risk of corrupting
     the physical memory by misguided DMA transactions.
     Because those DMA-capable devices can issue bus requests
     that target the physical memory directly while not involving the CPU altogether, such requests
     are naturally not subjected to the virtual-memory mechanism implemented in the
     CPU in the form of a memory-management unit (MMU).
     Figure img/no_iommu illustrates the problem. From the device's point of
     view, there is just physical memory.
     Hence, if a driver sets up a DMA transaction, e.g., if a disk driver wants to read a
     block from the disk, it programs the memory-mapped registers of the
     device with the address and size of a physical-memory buffer where it expects
     to receive the data.
     If the driver lives in a user-level component, as is the case for a
     Genode-based system, it still needs to know the physical address of the DMA
     buffer to program the device correctly.
     Unfortunately, there is nothing to prevent the driver from specifying any
     physical address to the device.
     A malicious driver could misuse the device to read and
     manipulate all parts of the physical memory, including the kernel.
     Consequently, device drivers and devices should ideally be trustworthy.
     However, there are several scenarios where this is ultimately not
     the case.
    

    	
      
      [image: img/no_iommu]
    
	
       The MMU restricts the access of physical memory pages by different components according to their virtual address spaces. However, direct memory accesses issued by the disk controller are not subjected to the MMU. The disk controller can access the entirety of the physical memory present in the system.

    


    
    
    Scenario 1: Direct device assignment to virtual machines

     
      When hosting virtual machines as Genode components, the direct assignment of
      a physical device such as a USB controller, a GPU, or a dedicated network
      card to the guest OS running in the virtual machine can be
      useful in two ways. First, if the guest OS is the sole user of the device,
      direct assignment of the device maximizes the I/O performance of the
      guest OS using the device. Second, the guest OS may be equipped with a
      proprietary device driver that is not present as a Genode component otherwise.
      In this case, the guest OS may be used as a runtime that executes the device
      driver, and thus, provides a driver interface to the Genode world. In both cases
      the guest OS should not be considered as trustworthy.
      On the contrary, it bears the risk of subverting the isolation between components.
      A misbehaving guest OS could issue DMA requests referring
      to the physical memory used by other components or even the kernel, and
      thereby break out of its virtual machine.
     

    
    
    Scenario 2: Firmware-driven attacks

     
      Modern peripherals such as wireless LAN adaptors, network cards, or GPUs
      employ firmware executed on the peripheral device. This firmware is executed
      on a microcontroller on the device, and is thereby not subjected to the
      policy of the normal operating system. Such firmware may either be built-in
      by the device vendor, or is loaded by the device driver at initialization
      time of the device. In both cases, the firmware tends to be a black box
      that remains obscure with the exception of the device vendor. Hidden functionality
      or vulnerabilities might be present in it. By the means of DMA transactions, such
      firmware has unlimited access to the system. For example, a back door
      implemented in the firmware of a network adaptor could look for
      special network packets to activate and control arbitrary spyware.
      Because malware embedded in the firmware of the device can neither be detected
      nor controlled by the operating system, both monolithic and microkernel-based
      operating systems are powerless against such attacks.
     

    
    
    Scenario 3: Bus-level attacks

     
      The previous examples misuse a DMA-capable device as a proxy to drive an
      attack. However, the system bus can be attacked directly with no hardware
      tinkering at all. There are ready-to-exploit interfaces that are featured on most
      PC systems. For example, most laptops come with PCMCIA / Express-Card slots,
      which allow expansion cards to access the system bus. Furthermore, serial bus
      interfaces, e.g., IEEE 1394 (Firewire), enable connected devices to indirectly
      access the system bus via the peripheral bus controller. If the bus controller
      allows the device to issue direct system bus requests by default, a connected
      device becomes able to gain control over the whole system.
     

    
    
    DMA transactions in component-based systems

     
      Direct memory access (DMA) of devices looks like the Achilles
      heel of component-based operating systems. The most compelling argument in
      favor of componentization is that by encapsulating each system component
      within a dedicated user-level address space, the system as a whole becomes more
      robust and secure compared to a monolithic operating-system kernel. In the
      event that one component fails due to a bug or an attack, other components
      remain unaffected. The prime example for such buggy components are, however, device
      drivers. By empirical evidence, those remain the most prominent trouble makers
      in today's operating systems, which suggests that the DMA loophole renders
      the approach of component-based systems largely ineffective.
      However, there are three counter arguments to this observation.
     

     	
       
       [image: img/iommu]
     
	
        An IOMMU arbitrates and virtualizes DMA accesses issued by a device to the RAM. Only if a valid IOMMU mapping exists for a given DMA access, the memory access is performed.

     


     
      First, by encapsulating each driver in a dedicated address space,
      classes of bugs that are unrelated to DMA remain confined in the
      driver component. In practice most driver-related problems stem from issues like
      memory leaks, synchronization problems, deadlocks, flawed driver logic, wrong
      state machines, or incorrect device-initialization sequences. For those classes
      of problems, the benefits of isolating the driver in a dedicated component
      still apply.
     

     
      Second, executing a driver largely isolated from other operating-system code
      minimizes the attack surface onto the driver. If the driver interface is
      rigidly small and well-defined, it is hard to compromise the driver by
      exploiting its interface.
     

     
      Third, modern PC hardware has closed the DMA loophole by incorporating
      so-called IOMMUs into the system. As depicted in Figure img/iommu, the IOMMU
      sits between the physical memory and the system bus where the devices are attached to.
      So each DMA request has to go through the IOMMU, which is not only able to arbitrate
      the access of DMA requests to the RAM but is also able to virtualize the address
      space per device. Similar to how an MMU confines each process running on the
      CPU within a distinct virtual address space, the IOMMU is able to confine each
      device within a dedicated virtual address space. To tell the different devices
      apart, the IOMMU uses the PCI device's bus-device-function triplet as unique
      identification.
     

     
      With an IOMMU in place, the operating system can effectively limit the scope
      of actions the given device can execute on the system. I.e., by restricting
      all accesses originating from a particular PCI device to the DMA buffers used
      for the communication, the operating system becomes able to detect and prevent
      any unintended bus accesses initiated by the device.
     

     
      When executed on the NOVA kernel, Genode subjects all DMA transactions to the
      IOMMU, if present. Section IOMMU support discusses the use of IOMMUs in
      more depth.
     

   

  
  
  Protocol stacks

   	
     
     [image: img/protocol_stack]
   
	
      Example of a protocol stack. The terminal provides the translation between the terminal-session interface (on the right) and the driver interfaces (on the left).

   


   
    A protocol stack translates one session interface to another (or the same)
    session interface. For example, a terminal component may provide a command-line
    application with a service for obtaining textual user input and
    for printing text.
    To implement this service, the terminal uses an input session and a
    framebuffer session. Figure img/protocol_stack depicts the relationship
    between the terminal, its client application, and the used drivers.
    For realizing the output of a stream of characters on
    screen, it implements a parser for escape sequences, maintains a state machine
    for the virtual terminal, and renders the pixel representation of characters
    onto the framebuffer. For the provisioning of textual user input, it responds
    to key presses reported by the input session, maintains the state of modifier
    keys, and applies a keyboard layout to the stream of incoming events.
    When viewed from the outside of the component, the terminal translates a terminal
    session to a framebuffer session as well as an input session.
   

   
    Similar to a device driver, a protocol stack typically serves a single client.
    In contrast to device drivers, however, protocol stacks are not bound to
    physical devices. Therefore, a protocol stack can be instantiated any number
    of times. For example, if multiple terminals are needed, one terminal
    component could be instantiated per terminal. Because each terminal uses an
    independent instance of the protocol stack, a bug in the protocol stack of one
    terminal does not affect any other terminal. However complex the implementation
    of the protocol stack may be, it is not prone to leaking information to another
    terminal because it is connected to a single client only. The leakage of
    information is constrained to interfaces used by the individual instance.
    Hence, in cases like this, the protocol-stack component is suitable
    for hosting highly complex untrusted code if such code cannot be avoided.
   

   
    Note that the example above cannot be generalized for all protocol stacks.
    There are protocol stacks that are critical for the confidentiality of
    information.
    For example, an in-band encryption component may translate plain-text network
    traffic to encrypted network traffic designated to be transported over a
    public network.
    Even though the component is a protocol stack, it may still be prone to
    leaking unencrypted information to the public network.
   

   
    Whereas protocol stacks are not necessarily critical for integrity and
    confidentiality, they are almost universally critical for availability.
   

  
  
  Resource multiplexers

   	
     
     [image: img/resource_multiplexer]
   
	
      A GUI server multiplexes the physical framebuffer and input devices among multiple applications.

   


   
    A resource multiplexer transforms one resource into a number of virtual
    resources. A resource is typically a session to a device driver. For
    example, a NIC-switch component may use one NIC session to a NIC driver
    as uplink and, in turn, provide a NIC service where each session represents
    a virtual NIC. Another example is a GUI server as depicted in Figure
    img/resource_multiplexer, which enables multiple applications to share
    the same physical framebuffer and input devices by presenting each
    client in a window or a virtual console.
   

   
    In contrast to a typical device driver or protocol stack that serves only a
    single client, a resource multiplexer is shared by potentially many clients.
    In the presence of untrusted clients besides security-critical clients,
    a resource multiplexer ultimately becomes a so-called multi-level component.
    This term denotes that the component is cross-cutting the security levels
    of all its clients. This has the following ramifications.
   

   
    	Covert channels

    	
     
      Because the component is a shared resource that is accessed by clients
      of different security levels, it must maintain the strict isolation
      between its clients unless explicitly configured otherwise. Hence, the
      component's client interface as well as the internal structure must be
      designed to prevent the leakage of information across clients. I.e.,
      two clients must never share the same namespace of server-side objects
      if such a namespace can be modified by the clients. For example, a window
      server that hands out global window IDs to its clients is prone to
      unintended information leakage because one client could observe the
      allocation of window IDs by another client. The ID allocation could be
      misused as a covert channel that circumvents security policies.
      In the same line, a resource multiplexer is prone to timing channels if
      the operations provided via its client interface depends on the behavior
      of other clients. For this reason, blocking RPC calls should be avoided
      because the duration of a blocking operation may reveal information about
      the internal state such as the presence of other clients of the resource
      multiplexer.
     

    

    	Complexity is dangerous

    	
     
      As a resource multiplexer is shared by clients of different security
      levels, the same considerations apply as for the OS kernel: high complexity
      poses a major risk for bugs. Such bugs may, in turn, result in the
      unintended flow of information between clients or degrade the quality of
      service for all clients. Hence, in terms of complexity, resource multiplexers
      must be as simple as possible.
     

    

    	Denial of service

    	
     
      The exposure of a resource multiplexer to untrusted and even malicious
      clients makes it a potential target for denial-of-service attacks.
      Some operations provided by the resource multiplexer may require the
      allocation of memory. For example, a GUI server may need memory for
      the book keeping of each window created by its clients.
      If the resource multiplexer performed such allocations from its own
      memory budget, a malicious client could trigger the exhaustion of
      server-side memory by creating new windows in an infinite loop.
      To mitigate this category of problems, a resource multiplexer should perform
      memory allocations exclusively from client-provided resources, i.e., using
      the session quota as provided by each client at session-creation time.
      Section Resource trading describes Genode's resource-trading mechanism
      in detail. In particular, resource multiplexers should employ heap
      partitioning as explained in Section Component-local heap partitioning.
     

    

    	Avoiding built-in policies

    	
     
      A resource multiplexer can be understood as a microkernel for a higher-level
      resource. Whereas a microkernel multiplexes or arbitrates the CPU and
      memory between multiple components, a resource multiplexer does the same
      for sessions.
      Hence, the principles for constructing microkernels equally apply for
      resource multiplexers.
      In the line of those principles, a resource multiplexer should ideally
      implement sole mechanisms but should be void of built-in policy.
     

    

    	Enforcement of policy

    	
     
      Instead of providing a built-in policy, a resource multiplexer obtains
      policy information from its configuration as supplied by its parent.
      The resource multiplexer must enforce the given policy. Otherwise, the
      security policy expressed in the configuration remains ineffective.
     

    

   


  
  
  Runtime environments and applications

   
    The component types discussed in the previous sections have in common that
    they deliberately lack built-in policy but act according to a policy
    supplied by their respective parents by the means of configuration.
    This raises the question where those policies should come from.
    The answer comes in the form of runtime environments and applications.
   

   	
     
     [image: img/runtime_environment]
   
	
      A runtime environment manages multiple child components.

   


   
    A runtime environment as depicted in Figure img/runtime_environment
    is a component that hosts child components.
    As explained in the Sections Recursive system structure and
    Resource trading, it is thereby able to exercise control over its children
    but is also responsible to manage the children's resources.
    A runtime environment controls its children in three ways:
   

   
    	Session routing

    	
     
      It is up to the runtime environment to decide how to route session
      requests originating from a child.
      The routing of sessions is discussed in Section Services and sessions.
     

    

    	Configuration

    	
     
      Each child obtains its configuration from its parent in the form of
      a ROM session as described in Section Component configuration.
      Using this mechanism, the runtime environment is able to feed
      policy information to its children. Of course, in order to make the policy
      effective, the respective child has to interpret and enforce the
      configuration accordingly.
     

    

    	Lifetime

    	
     
      The lifetime of a child ultimately depends on its parent. Hence, a
      runtime environment can destroy and possibly restart child components
      at any time.
     

    

   


   
    With regard to the management of child resources, a runtime environment can employ
    a large variety of policies using two principal approaches:
   

   
    	Quota management

    	
     
      Using the resource-trading mechanisms introduced in Section
      Resource trading, the runtime environment can assign resources to
      each child individually. Moreover, if a child supports the dynamic
      rebalancing protocol described in Section Dynamic resource balancing,
      the runtime environment may even change those assignments over the lifetime
      of its children.
     

    

    	Interposing services

    	
     
      Because the runtime environment controls the session routing of each
      child, it is principally able to interpose the child's use of any service
      including those normally provided by core such as
      PD (Section Protection domains (PD)), and
      CPU (Section Processing-time allocation (CPU)).
      The runtime environment may provide a locally implemented version of those
      session interfaces instead of routing session requests directly towards the
      core component.
      Internally, each session of such a local service may create a session to the
      real core service, thereby effectively wrapping core's sessions.
      This way, the runtime environment can not only observe the interaction of
      its child with core services but also implement custom resource-management
      strategies, for example, sharing one single budget among multiple children.
     

    

   


   
    Canonical examples of runtime environments are the init component that
    applies a policy according to its configuration, the noux runtime that
    presents itself as a Unix kernel to its children, a debugger that
    interposes all core services for the debugging target, or a virtual machine
    monitor.
   

   
    A typical application is a leaf node in the component tree that merely uses
    services. In practice, however, the boundary between applications and runtime
    environments can be blurry.
    As illustrated in Section Component composition, Genode fosters the
    internal split of applications into several components, thereby forming
    multi-component applications.
    From the outside, such a multi-component application appears as a leaf node of
    the component tree but internally, it employs an additional level of
    componentization by executing portions of its functionality in separate child
    components.
    The primary incentive behind this approach is the sandboxing of untrusted
    application functionality. For example, a video player may execute the video
    codec within a separate child component so that a bug in the complex video
    codec will not compromise the entire video-player application.
   

  
  
  Common session interfaces

   
    The core services described in Section Core - the root of the component tree
    principally enable the creation of a recursively structured system. However,
    their scope is limited to the few low-level resources provided by core, namely
    processing time, memory, and low-level device resources. Device drivers
    (Section Device drivers) and protocol stacks (Section Protocol stacks)
    transform those low-level resources into higher-level resources. Analogously
    to how core's low-level resources are represented by the session interfaces
    of core's services, higher-level resources are represented by the session
    interfaces provided by device drivers and protocol stacks. In principle,
    each device driver could introduce a custom session interface representing
    the particular device.
    But as discussed in the introduction of Chapter Components, a low
    number of orthogonal session interfaces is desirable to maximize the
    composability of components.
    This section introduces the common session interfaces that are used throughout
    Genode.
   

   
   
   Read-only memory (ROM)

   
    
     The ROM session interface makes a piece of data in the form of a dataspace
     available to the client.
    

    
    
    Session creation

     
      At session-creation time, the client specifies the name of a ROM module as
      session argument. One server may hand out different ROM modules depending
      on the name specified. Once a ROM session has been created, the client can
      request the capability of the dataspace that contains the ROM module.
      Using this capability and the region map of the client's PD session, the
      client can attach the ROM module to its local address space and thereby access
      the information. The client is expected to merely read the data, hence the
      name of the interface.
     

    
    
    ROM module updates

     
      In contrast to the intuitive assumption that read-only data is immutable,
      ROM modules may mutate during the lifetime of the session. The server may
      update the content of the ROM module with new versions. However, the server
      does not do so without the consent of the client. The protocol between
      client and server consists of the following steps.
     

     
      	
       
        The client registers a signal handler at the server to indicate that it
        is interested in receiving updates of the ROM module.
       

      

      	
       
        If the server has a new version of the ROM module, it does not immediately
        change the dataspace shared with the client. Instead, it maintains the
        new version separately and informs the client by submitting a signal to
        the client's signal handler.
       

      

      	
       
        The client continues working with the original version of the dataspace.
        Once it receives the signal from the server, it may decide to update the
        dataspace by calling the update function at the server.
       

      

      	
       
        The server responds to the update request. If the new version fits into
        the existing dataspace, the server copies the content of the new version
        into the existing dataspace and returns this condition with the reply of the
        update call. Thereby, the ROM session interface employs synchronous bulk
        transfers as described in Section Synchronous bulk transfer.
       

      

      	
       
        The client evaluates the result of the update call. If the new version
        did fit into the existing dataspace, the update is complete at this point.
        However, if the new version is larger than the existing dataspace, the
        client requests a new dataspace from the server.
       

      

      	
       
        Upon reception of the dataspace request, the server destroys the original
        dataspace (thereby making it invisible to the client), and returns
        the new version of the ROM module as a freshly allocated dataspace.
       

      

      	
       
        The client attaches the new dataspace capability to its local address
        space to access the new version.
       

      

     

     
      The protocol is designed in such a way that neither the client nor the server need
      to support updates. A server with no support for updating ROM modules such
      as core's ROM service simply ignores the registration of a signal handler
      by a client. A client that is not able to cope with ROM-module updates
      never requests the dataspace twice.
     

     
      However, if both client and server support the update protocol, the ROM
      session interface provides a means to propagate large state changes
      from the server to the client in a transactional way.
      In the common case where the new version of a ROM module fits into the same
      dataspace as the old version, the update does not require any memory
      mappings to be changed.
     

    
    
    Use cases

     
      The ROM session interface is used wherever data shall be accessed in a memory
      mapped fashion.
     

     
      	
       
        Boot time data comes in the form of the ROM sessions provided by core's
        ROM service. On some kernels, core exports kernel-specific information
        such as the kernel version in the form of special ROM modules.
       

      

      	
       
        If an executable binary is provided as a ROM module, the binary's text
        segment can be attached directly to the address space of a new process
        (Section Component creation).
        So multiple instances of the same component effectively share the same
        text segment.
        The same holds true for shared libraries. For this reason, executable
        binaries and shared libraries are requested in the form of ROM sessions.
       

      

      	
       
        Components obtain their configuration by requesting a ROM session for the
        "config" ROM module at their respective parent (Section Component configuration).
        This way, configuration information
        can be propagated using a simple interface with no need for a file
        system. Furthermore, the update mechanism allows the parent to dynamically
        change the configuration of a component during its lifetime.
       

      

      	
       
        As described in Section Publishing and subscribing, multi-component
        applications may obtain data models in the form of ROM sessions. In such
        scenarios, the ROM session's update mechanism is used to propagate
        model updates in a transactional way.
       

      

     

   

   
   
   Report

   
    
     The report session interface allows a client to report its internal state to
     the outside using synchronous bulk transfers
     (Section Synchronous bulk transfer).
    

    
    
    Session creation

     
      At session-creation time, the client specifies a label and a buffer size.
      The label aids the routing of the session request but may also be used
      to select a policy at the report server. The buffer size determines the
      size of the dataspace shared between the report server and its client.
     

    
    
    Use cases

     
      	
       
        Components may use report sessions to export their internal state for
        monitoring purposes or for propagating exceptional events.
       

      

      	
       
        Device drivers may report information about detected devices or other
        resources. For example, a bus driver may report a list of devices attached
        on the bus, or a wireless driver may report the list of available networks.
       

      

      	
       
        In multi-component applications, components that provide data models
        to other components may use the report-session interface to propagate
        model updates.
       

      

     

   

   
   
   Terminal and UART

   
    
     The terminal session interface provides a bi-directional communication
     channel between client and server using synchronous bulk transfers
     (Section Synchronous bulk transfer). It is primarily meant to be used for textual
     interfaces but may also be used to transfer other serial streams of
     data.
    

    
     The interface uses the two RPC functions read and write to arbitrate
     the access to a shared-memory communication buffer between client and server
     as described in Section Synchronous bulk transfer. The read function
     never blocks. When called, it copies new input into the communication buffer
     and returns the number of new characters. If there is no new input, it
     returns 0. To avoid the need to poll for new input at the client side, the
     client can register a signal handler that gets notified upon the arrival of
     new input. The write function takes the number of to-be-written characters
     as argument. The server responds to this function by processing the specified
     amount of characters from the communication buffer.
    

    
     Besides the actual read and write operations, the terminal supports the
     querying of the number of new available input events (without reading it) and the
     terminal size in rows and columns.
    

    
    
    Session creation

     
      At session-creation time, the terminal session may not be ready to use.
      For example, a TCP terminal session needs an established TCP connection first.
      In such a situation, the use of the terminal session by a particular client
      must be deferred until the session becomes ready.
      Delaying the session creation at the server side is not an option because this
      would render the server's entry point unavailable for all other clients
      until the TCP connection is ready.
      Instead, the client blocks until the server delivers a connected signal. This signal
      is emitted when the session becomes ready to use. The client waits for this
      signal right after creating the session.
     

    
    
    Use cases

     
      	
       
        Device drivers that provide streams of characters in either direction.
       

      

      	
       
        A graphical terminal.
       

      

      	
       
        Transfer of streams of data over TCP (using the TCP terminal).
       

      

      	
       
        Writing streams of data to a file (using a file terminal).
       

      

      	
       
        User input and output of traditional command-line based software, i.e.,
        programs executed in the noux runtime environment.
       

      

      	
       
        Multiplexing of multiple textual user interfaces (using the terminal-mux
        component).
       

      

      	
       
        Headless operation and management of subsystems (using the CLI monitor).
       

      

     

    
    
    UART

     
      The UART session interface complements the terminal session interface with
      additional control functions, e.g., for setting the baud rate. Because UART
      sessions are compatible to terminal sessions, a UART device driver can be
      used as both UART server and terminal server.
     

   

   
   
   Input

   
    
     The input session interface is used to communicate low-level user-input
     events from the server to the client using synchronous bulk transfers
     (Section Synchronous bulk transfer). Such an event can be of one of the
     following types:
    

    
     	press or release

     	
      
       of a button or key. Each physical button (such as a mouse
       button) or key (such as a key on a keyboard) is represented by a unique
       value. At the input-session level, key events are reported as raw hardware
       events. They are reported without a keyboard layout applied and without any
       interpretation of meta keys (like shift, alt, and control). This gives the
       client the flexibility to handle arbitrary combinations of keys.
      

     

     	relative motion

     	
      
       of pointer devices such as a mouse. Such events are
       generated by device drivers.
      

     

     	absolute motion

     	
      
       of pointer devices such as a touch screen or graphics
       tablet. Furthermore absolute motion events are generated by virtual
       input devices such as the input session provided by a GUI server.
      

     

     	wheel motion

     	
      
       of scroll wheels in vertical and horizontal directions.
      

     

     	focus

     	
      
       of the session. Focus events are artificially generated by servers
       to indicate a gained or lost keyboard focus of the client. The client
       may respond to such an event by changing its graphical representation
       accordingly.
      

     

     	leave

     	
      
       of the pointer position. Leave events are artificially generated
       by servers to indicate a lost pointer focus.
      

     

     	character

     	
      
       associated with a pressed key. This type of event is usually
       not generated by low-level device drivers but by a higher-level
       service - like the input-filer component - that applies keyboard-layout
       rules to sequences of low-level events. Each character event encodes a
       single UTF-8 symbol, which is ready to be consumed by components that
       operate on textual input rather than low-level hardware events.
      

     

    


    
    
    Use cases

     
      	
       
        Drivers for user-input devices play the roles of input servers.
       

      

      	
       
        Providing user input from a GUI server to its clients, e.g., the
        interface of the nitpicker GUI server provides an input session as part
        of the server's interface.
       

      

      	
       
        Merging multiple streams of user input into one stream (using an input
        merger).
       

      

      	
       
        Virtual input devices can be realized as input servers that generate
        artificial input events.
       

      

     

   

   
   
   Framebuffer

   
    
     The framebuffer session interface allows a client to supply pixel data to
     a framebuffer server such as a framebuffer driver or a virtual framebuffer
     provided by a GUI server. The client obtains access to the framebuffer as
     a dataspace, which is shared between client and server. The client may
     update the pixels within the dataspace at any time. Once a part of the
     framebuffer has been updated, the client informs the server by calling a
     refresh RPC function. Thereby, the framebuffer session interface employs a
     synchronous bulk transfer mechanism (Section Synchronous bulk transfer).
    

    
    
    Session creation

     
      In general, the screen mode is defined by the framebuffer server, not the
      client. The mode may be constrained by the physical capabilities of the
      hardware or depend on the driver configuration. Some framebuffer servers,
      however, may take a suggestion by the client into account. At session-creation
      time, the client may specify a preferred mode as session argument. Once the
      session is constructed, however, the client must request the actually used
      mode via the mode RPC function.
     

    
    
    Screen-mode changes

     
      The session interface supports dynamic screen-mode changes during the lifetime
      of the session using the following protocol:
     

     
      	
       
        The client may register a signal handler using the mode_sigh RPC function.
        This handler gets notified in the event of server-side mode changes.
       

      

      	
       
        Similarly to the transactional protocol used for updating ROM modules
        (Section Read-only memory (ROM)), the dataspace shared between client and
        server stays intact until the client acknowledges the mode change by calling
        the mode RPC function.
       

      

      	
       
        The server responds to the mode function by applying the new mode and
        returns the corresponding mode information to the client. This step may
        destroy the old framebuffer dataspace.
       

      

      	
       
        The client requests a new version of the frambuffer dataspace by calling
        the dataspace RPC function and attaches the dataspace to its local
        address space.
        Note that each subsequent call of the dataspace RPC function may result
        in the replacement of the existing dataspace by a new dataspace. Hence,
        calling dataspace twice may invalidate the dataspace returned from the
        first call.
       

      

     

    
    
    Frame-rate synchronization

     
      To enable framebuffer clients to synchronize their operations with the display
      frequency, a client can register a handler for receiving
      display-synchronization events as asynchronous notifications
      (Section Asynchronous notifications).
     

    
    
    Use cases

     
      	
       
        Framebuffer device drivers are represented as framebuffer servers.
       

      

      	
       
        A virtual framebuffer may provide both the framebuffer and input session
        interfaces by presenting a window on screen. The resizing of the window
        may be reflected to the client as screen-mode changes.
       

      

      	
       
        A filter component requests a framebuffer session and, in turn, provides
        a framebuffer session to a client. This way, pixel transformations can be
        applied to pixels produced by a client without extending the client.
       

      

     

   

   
   
   Nitpicker GUI

   
    	
      
      [image: img/nitpicker_session]
    
	
       A nitpicker session aggregates a framebuffer session, an input session, and a session-local view stack.

    


    
     The nitpicker session interface combines an input session and a
     framebuffer session into a single session (Figure img/nitpicker_session).
     Furthermore, it supplements the framebuffer session with the notion of views,
     which allows the creation of flexible multi-window user interfaces.
     The interface is generally suited for resource multiplexers of the framebuffer and input
     sessions.
     A view is a rectangular area on screen that displays a portion of the client's
     virtual framebuffer. The position, size, and viewport of each view is defined
     by the client. Views can overlap, thereby creating a view stack. The stacking
     order of the views of one client can be freely defined by the client.
    

    
     The size of the virtual framebuffer can be freely defined by the client
     but the required backing store must be provided in the form of session
     quota.
     Clients may request the screen mode of the physical framebuffer and are
     able to register a signal handler for mode changes of the physical
     framebuffer. This way, nitpicker clients are able to adapt themselves to
     changing screen resolutions.
    

    
    
    Use cases

     
      	
       
        The nitpicker GUI server allows multiple GUI applications to share a
        pair of a physical framebuffer session and an input session in a secure way.
       

      

      	
       
        A window manager implementing the nitpicker session interface may
        represent each view as a window with window decorations and a placement
        policy. The resizing of a window by the user is reflected to the client as
        a screen-mode change.
       

      

      	
       
        A loader (Section Loader) virtualizes the nitpicker session interface for
        the loaded subsystem.
       

      

     

   

   
   
   Platform

   
    
     The platform session interface (on ARM-based devices) and the PCI session
     interface (on x86-based machines) provide the client with access to the
     devices present on the hardware platform. See Section Platform driver
     for more information on the role of platform drivers.
    

   

   
   
   Block

   
    
     The block session interface allows a client to access a storage server at
     the block level. The interface is based on a packet stream
     (Section Asynchronous bulk transfer - packet streams). Each packet
     represents a block-access command, which can be either read or write.
     Thanks to the use of the packet-stream mechanism, the client can issue
     multiple commands at once and thereby hide access latencies by submitting
     batches of block requests. The server acknowledges each packet after
     completing the corresponding block-command operation.
    

    
     The packet-stream interface for submitting commands is complemented by
     the info RPC function for querying the properties of the block device, i.e.,
     the supported operations, the block size, and the block count. Furthermore,
     a client can call the sync RPC function to flush caches at the block server.
    

    
    
    Session creation

     
      At session-creation time, the client can dimension the size of the
      communication buffer as session argument. The server allocates the shared
      communication buffer from the session quota.
     

    
    
    Use cases

     
      	
       
        Block-device drivers implement the block-session interface.
       

      

      	
       
        The part-block component requests a single block session, parses a
        partition table, and hands out each partition as a separate block session
        to its clients. There can be one client for each partition.
       

      

      	
       
        File-system servers use block sessions as their back end.
       

      

     

   

   
   
   Regulator

   
    
     The regulator session represents an adjustable value in the hardware
     platform. Examples are runtime-configurable frequencies and voltages.
     The interface is a plain RPC interface.
    

   

   
   
   Timer

   
    
     The timer session interface provides a client with a session-local time
     source. A client can use it to schedule timeouts that are delivered as
     signals to a previously registered signal handler. Furthermore, the client
     can request the elapsed number of milliseconds since the creation of the
     timer session.
    

   

   
   
   NIC

   
    
     A NIC session represents a network interface that operates at network-packet
     level. Each session employs two independent packet streams (Section
     Asynchronous bulk transfer - packet streams), one for receiving network
     packets and one for transmitting network packets. Furthermore, the client
     can query the MAC address of the network interface.
    

    
    
    Session creation

     
      At session-creation time, the communication buffers of both packet streams are
      dimensioned via session arguments. The communication buffers are allocated by
      the server using the session quota provided by the client.
     

    
    
    Use cases

     
      	
       
        Network drivers are represented as NIC servers.
       

      

      	
       
        A NIC switch uses one NIC session connected to a NIC driver, and provides
        multiple virtual NIC interfaces to its clients by managing a custom
        name space of virtual MAC addresses.
       

      

      	
       
        A TCP/IP stack uses a NIC session as back end.
       

      

     

   

   
   
   Audio output

   
    
     The audio output interface allows for the transfer of audio data from the
     client to the server.
     One session corresponds to one channel. I.e., for
     stereo output, two audio-out sessions are required.
    

    
    
    Session construction

     
      At session-construction time, the client specifies the type of channel
      (e.g., front left) as session argument.
     

    
    
    Interface design

     
      For the output of streamed audio data, a codec typically decodes a relatively
      large portion of an audio stream and submits the sample data to a mixer. The
      mixer, in turn, mixes the samples of multiple sources and forwards the result
      to the audio driver. The codec, the mixer, and the
      audio driver are separate components. By using large buffer sizes between
      them, there is only very little context-switching overhead. Also, the driver
      can submit large buffers of sample data to the sound device without any
      further intervention needed.
      In contrast, sporadic sounds are used to inform the user about an immediate
      event. An example is the acoustic feedback to certain user input in games.
      The user ultimately expects that such sounds are played back without much
      latency. Otherwise the interactive experience would suffer.
      Hence, using large buffers between the audio source, the mixer, and the driver
      is not an option.
      The audio-out session interface was specifically designed to
      accommodate both corner cases of audio output.
     

     	
       
       [image: img/audio_out_session]
     
	
        The time-driven audio-out session interface uses shared memory to transfer audio frames and propagate progress information.

     


     
      Similarly to the packet-stream mechanism described in Section
      Asynchronous bulk transfer - packet streams,
      the audio-out session interface depicted in Figure img/audio_out_session
      employs a combination of shared memory and asynchronous notifications.
      However, in contrast to the packet-stream mechanism, it has no notion of
      ownership of packets. When using the normal packet-stream protocol,
      either the source or the sink is in charge of handling a given packet at a
      given time, not both. The audio-out session interface weakens this notion of
      ownership by letting the source update once submitted audio frames even after
      submitting them.
      If there are solely continuous streams of audio arriving at the mixer,
      the mixer can mix those large batches of audio samples at once and pass the
      result to the driver.
     

     	
       
       [image: img/mixer_streaming]
     
	
        The mixer processes batches of incoming audio frames from multiple sources.

     


     
      Now, if a sporadic sound comes in, the mixer checks the
      current output position reported by the audio driver, and re-mixes those
      portions that haven't been played back yet by incorporating the sporadic sound.
      So the buffer consumed by the driver gets updated with new data.
     

     	
       
       [image: img/mixer_sporadic]
     
	
        A sporadic occurring sound prompts the mixer to remix packets that were already submitted in the output queue.

     


     
      Besides the way of how packets are populated with data, the second
      major difference to the packet-stream mechanism is its time-triggered
      mode of operation. The
      driver produces periodic signals that indicate the completeness of a
      played-back audio packet. This signal triggers the mixer to become active,
      which in turn serves as a time base for its clients. The current playback
      position is denoted alongside the sample data as a field in the memory buffer
      shared between source and sink.
     

    
    
    Use cases

     
      	
       
        The audio-out session interface is provided by audio drivers.
       

      

      	
       
        An audio mixer combines incoming audio streams of multiple clients into
        one audio stream transferred to an audio driver.
       

      

     

   

   
   
   File system

   
    
     The file-system session interface provides the client with a storage
     facility at the file and directory-level. Compared to the block session
     interface (Section Block), it operates on a higher abstraction level
     that is suited for multiplexing the storage device among multiple clients.
     Similar to the block session, the file-system session employs a single
     packet stream interface
     (Section Asynchronous bulk transfer - packet streams) for issuing read
     and write operations. This way, read and write requests can be processed
     in batches and even out of order.
    

    
     In contrast to read and write operations that carry potentially large amounts
     of payload, the directory functions provided by the file-system session
     interface are synchronous RPC functions. Those functions are used for
     opening, creating, renaming, moving, deleting, and querying files,
     directories and symbolic links.
    

    
     The directory functions are complemented with an interface for receiving
     notifications upon file or directory changes using asynchronous notifications.
    

    
    
    Use cases

     
      	
       
        A file-system operates on a block session to provide file-system sessions to
        its clients.
       

      

      	
       
        A RAM file system keeps the directory structure and files in memory and
        provides file-system sessions to multiple clients. Each session may be
        restricted in different ways (such as the root directory as visible by
        the respective client, or the permission to write). Thereby the clients
        can communicate using the RAM file system as a shared storage facility
        but are subjected to an information-flow policy.
       

      

      	
       
        A file-system component may play the role of a filter that transparently
        encrypts the content of the files of its client and stores the
        encrypted files at another file-system server.
       

      

      	
       
        A pseudo file system may use the file-system interface as an hierarchic
        control interface. For example, a trace file system provides a pseudo
        file system as a front end to interact with core's TRACE service.
       

      

     

   

   
   
   Loader

   
    
     The loader session interface allows clients to dynamically create Genode
     subsystems to be hosted as children of a loader service. In contrast to a
     component that is spawning a new subsystem as an immediate child, a loader
     client has very limited control over the spawned subsystem. It can merely
     define the binaries and configuration to start, define the position where the
     loaded subsystem will appear on screen, and kill the subsystem. But it is not
     able to interfere with the operation of the subsystem during its lifetime.
    

    
    
    Session creation

     
      At session-creation time, the client defines the amount of memory to be
      used for the new subsystem as session quota. Once the session is established,
      the client equips the loader session with ROM modules that will be presented
      to the loaded subsystem. From the perspective of the subsystem, those ROM
      modules can be requested in the form of ROM sessions from its parent.
     

    
    
    Visual integration of the subsystem

     
      The loaded subsystem may implement a graphical user interface by creating
      a nitpicker session (Section Nitpicker GUI). The loader responds to such a
      session request by providing a locally implemented session. The loader
      subordinates the nitpicker session of the loaded subsystem to a nitpicker
      view (called parent view) defined by the loader client.
      The loader client can use the loader session interface to position the view
      relative to the parent-view position. Thereby, the graphical user interface
      of the loaded subsystem can be seamlessly integrated with the user interface
      of the loader client.
     

    
    
    Use case

     
      The most illustrative use case is the execution of web-browser plugins where
      neither the browser trusts the plugin nor the plugin trusts the browser
      (Section Ceding the parenthood).
     

   

  
  
  Component configuration

   
    By convention, each component obtains its configuration in the form of a
    ROM module named "config". The ROM session for this ROM module is provided
    by the parent of the component. For example, for the init component, which is
    the immediate child of core, its "config" ROM module is provided by core's
    ROM service. Init, in turn, provides a different config ROM module to each
    of its children by a locally implemented ROM service per child.
   

   
   
   Configuration format

   
    
     In principle, being a mere ROM module, a component configuration can come in
     an arbitrary format. However, throughout Genode, there exists the convention
     to use XML as syntax and wrap the configuration within a <config> node.
     The definition of sub nodes of the configuration depends on the respective
     component.
    

   

   
   
   Server-side policy selection

   
    
     Servers that serve multiple clients may apply a different policy
     to each client.
     In general, the policy may be defined by the session arguments aggregated on
     the route of the session request as explained in Section
     Services and sessions.
     However, in the usual case, the policy is dictated by the common parent
     of client and server. In this case, the parent may propagate its policy
     as the server's configuration and deliver a textual label as session argument
     for each session requested at the server. The configuration contains a
     list of policies whereas the session label is used as a key to select
     the policy from the list. For example, the following snippet configures
     a RAM file system with different policies.
    


 <config>
   <!-- constrain sessions according to their labels -->
   <policy label="noux -> root" root="/" />
   <policy label="noux -> home" root="/home/user" />
   <policy label="noux -> tmp"  root="/tmp" writeable="yes" />
 </config>


    
     Each time a session is created, the server matches the supplied session label
     against the configured policies. Only if a policy matches, the parameters of
     the matching policy come into effect. The way how the session label is
     matched against the policies depends on the implementation of the server.
     However, by convention, servers usually select the policy depending on the
     attributes label, label_prefix, and label_suffix. If present, the
     label attribute must perfectly match the session label whereby the
     suffix and prefix counterparts allow for partially matching the session label.
     If multiple <policy> nodes match at the server side, the most specific
     policy is selected. Exact matches are considered as most specific, prefixes as
     less specific, and suffixes as least specific. If multiple prefixes or
     suffixes match, the longest is considered as the most specific.
     If multiple policies have the same label, the selection is undefined. This is
     a configuration error.
    

   

   
   
   Dynamic component reconfiguration at runtime

   
    
     As described in Section Read-only memory (ROM), a ROM module can be updated
     during the lifetime of the ROM session. This principally enables a parent
     to dynamically reconfigure a child component without the need to restart it.
     If a component supports its dynamic reconfiguration, it installs a signal
     handler at its "config" ROM session. Each time, the configuration changes,
     the component will receive a signal. It responds to such a signal by obtaining
     the new version of the ROM module using the steps described in
     Section Read-only memory (ROM) and applying the new configuration.
    

   

  
  
  Component composition

   
    Genode provides a playground for combining components in many different ways.
    The best composition of components often depends on the goal of the system
    integrator. Among possible goals are the ease of use for the end user, the
    cost-efficient reuse of existing software, and good application
    performance. However, the most prominent goal is the mitigation of security
    risks. This section presents composition techniques that leverage
    Genode's architecture to dramatically reduce the trusted computing base of
    applications and to solve rather complicated problems in surprisingly easy
    ways.
   

   
    The figures presented throughout this section use a simpler nomenclature
    than the previous sections. A component is depicted as box. Parent-child
    relationships are represented as light-gray arrows. A session between
    a client and a server is illustrated by a dashed arrow pointing to the
    server.
   

   [image: img/simplified_nomenclature]

   
   
   Sandboxing

   
    
     The functionality of existing applications and libraries is often worth
     reusing or economically downright infeasible to reimplement. Examples
     are PDF rendering engines, libraries that support commonly used video and
     audio codecs, or libraries that decode hundreds of image formats.
    

    
     However, code of such rich functionality is inherently complex and must be
     assumed to contain security flaws. This is empirically evidenced by the
     never ending stream of security exploits targeting the decoders of data
     formats. But even in the absence of bugs, the processing of data by
     third-party libraries may have unintended side effects. For example,
     a PDF file may contain code that accesses the file system, which the user
     of a PDF reader may not expect. By linking such a third-party library to a
     security-critical application, the application's security is seemingly traded
     against the functional value that the library offers.
    

    	
      
      [image: img/qt_avplay]
    
	
       A video player executes the video and audio codecs inside a dedicated sandbox.

    


    
     Fortunately, Genode's architecture principally allows every component to
     encapsulate untrusted functionality in child components. So instead of
     directly linking a third-party library to an application, the application
     executes the library code in a dedicated sub component. By imposing a
     strict session-routing policy onto the component, the untrusted code is
     restricted to its sandbox. Figure img/qt_avplay shows a video player as
     a practical example of this approach.
    

    
     The video player uses the nitpicker GUI server to present a user interface
     with the graphical controls of the player. Furthermore, it has access to
     a media file containing video and audio data.
     Instead of linking the media-codec library (libav) directly to the video-player
     application, it executes the codec as a child component. Thereby the
     application effectively restricts the execution environment of the codec
     to only those resources that are needed by the codec. Those resources are
     the media file that is handed out to the codec as a ROM module, a facility
     to output video frames in the form of a framebuffer session, and a facility
     to output an audio stream in the form of an audio-out session.
    

    
     In order to reuse as much code as possible, the video player executes an
     existing example application called avplay that comes with the codec library
     as child component.
     The avplay example uses libSDL as back end for video and audio
     output and responds to a few keyboard shortcuts for controlling the video
     playback such as pausing the video. Because there exists a Genode version
     of libSDL, avplay can be executed as a Genode component with no modifications.
     This version of libSDL requests a framebuffer session (Section Framebuffer)
     and an audio-out session (Section Audio output) to perform the video and
     audio output.
     To handle user input, libSDL opens an input session (Section Input).
     Furthermore, it opens a ROM session for obtaining a configuration. This
     configuration parametrizes the audio back end of libSDL.
     Because avplay is a child of the video-player application, all those session
     requests are directed to the application. It is entirely up to the application
     how to respond to those requests. For accommodating the
     request for a frambuffer session, the application creates a second nitpicker
     session, configures a virtual framebuffer, and embeds this virtual framebuffer
     into its GUI. It keeps the nitpicker session capability for itself and
     merely hands out the virtual framebuffer's session capability to avplay.
     For accommodating the request for the input session, it hands out a
     capability to a locally-implemented input session. Using this input session,
     it becomes able to supply artificial input events to avplay. For example,
     when the user clicks on the play button of the application's GUI, the
     application would submit a sequence of press and release events to the
     input sessions, which appear to avplay as the keyboard shortcut for starting
     the playback.
     To let the user adjust the audio parameters of libSDL during playback,
     the video-player application dynamically changes the avplay configuration
     using the mechanism described in
     Section Dynamic component reconfiguration at runtime. As a response to a
     configuration update, libSDL's audio back end picks up the changed
     configuration parameters and adjusts the audio playback accordingly.
    

    
     By sandboxing avplay as a child component of the video player, a bug in
     the video or audio codecs can no longer compromise the application. The
     execution environment of avplay is tailored to the needs of the codec.
     In particular, it does not allow the codec to access any files or the
     network. In the worst case, if avplay becomes corrupted, the possible
     damage is restricted to producing wrong video or audio frames but a corrupted
     codec can neither access any of the user's data nor can it communicate to the
     outside world.
    

   

   
   
   Component-level and OS-level virtualization

   
    
     The sandboxing technique presented in the previous section tailors the
     execution environment of untrusted third-party code by applying an
     application-specific policy to all session requests originating from the
     untrusted code. However, the tailoring of the execution environment by
     the parent can even go a step further by providing the all-encompassing
     virtualization of all services used by the child, including core's services
     such as PD, CPU, and LOG.
     This way, the parent can not just tailor the execution environment of a child
     but completely define all aspects of the child's execution. This clears
     the way for introducing custom operating-system interfaces at any position
     within the component tree, or for monitoring the behavior of subsystems.
    

    	
      
      [image: img/noux]
    
	
       The Noux runtime provides a Unix-like interface to its children.

    


    
    
    Introducing a custom OS interface

     
      By implementing all session interfaces normally provided by core, a runtime
      environment becomes able to handle all low-level interactions of the
      child with core. This includes the allocation of memory using the PD service,
      the spawning and controlling of threads using the CPU service, and the
      management of the child's address space using the PD service.
     

     
      The noux runtime illustrated in Figure img/noux is the canonical example of
      this approach.
      It appears as a Unix kernel to its children and thereby enables the
      use of Unix software on top of Genode.
      Normally, several aspects of Unix would contradict with Genode's architecture:
     

     
      	
       
        The Unix system-call interface supports files and sockets as first-level
        citizens.
       

      

      	
       
        There is no global virtual file system in Genode.
       

      

      	
       
        Any Unix process can allocate memory as needed. There is no necessity for explicit
        assignment of memory resources to Unix processes.
       

      

      	
       
        Processes are created by forking existing processes. The new process
        inherits the roles (in the form of open file descriptors) of the
        forking process.
       

      

     

     
      Noux resolves these contradictions by providing
      the interfaces of core's low-level services alongside a custom RPC interface.
      By providing a custom noux session interface to its children, noux can
      accommodate all kinds of abstractions including the notion of files and
      sockets.
      Noux maintains a virtual file system that appears to be global among all the
      children of the noux instance.
      Since noux handles all the children's interaction with the PD service, it can
      hand out memory allocations from a pool of memory shared among all children.
      Finally, because noux observes all the interactions of each child with the
      PD service, it is able to replay the address-space layout of an existing
      process to a new process when fork is called.
     

    
    
    Monitoring the behavior of subsystems

     
      Besides hosting arbitrary OS personalities as a subsystem, the interception
      of core's services allows for the all-encompassing monitoring of subsystems
      without the need for special support in the kernel. This is useful for
      failsafe monitoring or for user-level debugging.
     

     	
       
       [image: img/no_gdb]
     
	
        Each Genode component is created out of basic resources provided by core.

     


     
      As described in Section Component creation, any Genode component is
      created out of low-level resources in the form of sessions provided by core.
      Those sessions include at least a PD session, a CPU session, and a ROM session
      with the executable binary as depicted in Figure img/no_gdb. In addition to
      those low-level sessions, the component may interact with sessions provided by
      other components.
     

     
      For debugging a component, a debugger would need a way to inspect the
      internal state of the component. As the complete internal state is usually
      known by the OS kernel only, the traditional approach to user-level debugging
      is the introduction of a debugging interface into the kernel. For example,
      Linux has the ptrace mechanism and several microkernels of the L4 family
      come with built-in kernel debuggers. Such a debugging interface, however,
      introduces security risks. Besides increasing the complexity of the kernel,
      access to the kernel's debugging mechanisms needs to be strictly subjected to a
      security policy. Otherwise any program could use those mechanisms to inspect
      or manipulate other programs.
      Most L4 kernels usually exclude debugging features in production builds
      altogether.
     

     	
       
       [image: img/gdb_monitor]
     
	
        By intercepting all sessions to core's services, a debug monitor obtains insights into the internal state of its child component. The debug monitor, in turn, is controlled from a remote debugger.

     


     
      In a Genode system, the component's internal state is represented in the
      form of core sessions. Hence, by intercepting those sessions of a child,
      a parent can monitor all interactions of the child with core and thereby
      record the child's internal state. Figure img/gdb_monitor shows a
      scenario where a debug monitor executes a component (debugging target) as a
      child while intercepting all sessions to core's services. The interception
      is performed by providing custom implementations of core's session interfaces
      as locally implemented services. Under the hood, the local services realize
      their functionality using actual core sessions. But by sitting in the middle
      between the debugging target and core, the debug monitor can observe the
      target's internal state including the memory content, the virtual
      address-space layout, and the state of all threads running inside the
      component. Furthermore, since the debug monitor is in possession of all the
      session capabilities of the debugging target, it can manipulate it in
      arbitrary ways. For example, it can change thread states (e.g., pausing the
      execution or enable single-stepping) and modify the memory content
      (e.g., inserting breakpoint instructions). The figure shows that those
      debugging features can be remotely controlled over a terminal connection.
     

     	
       
       [image: img/on_target_gdb]
     
	
        The GNU debugger is executed within a dedicated noux instance, thereby providing an on-target debugging facility.

     


     
      Using this form of component-level virtualization, a problem that used to
      require special kernel additions in traditional operating systems
      can be solved via Genode's regular interfaces.
      Furthermore, Figure img/on_target_gdb shows that by
      combining the solution with OS-level virtualization, the connection
      to a remote debugger can actually be routed to an on-target instance of the
      debugger, thereby enabling on-target debugging.
     

   

   
   
   Interposing individual services

   
    
     The design of Genode's fundamental services, in particular resource
     multiplexers, is guided by the principle of minimalism. Because such
     components are security critical, complexity must be avoided.
     Functionality is added to such components only if it cannot be provided
     outside the component.
    

    
     However, components like the nitpicker GUI server are often confronted with
     feature requests. For example, users may want to move a window on screen by
     dragging the window's title bar. Because nitpicker has no notion of windows or
     title bars, such functionality is not supported. Instead, nitpicker moves
     the burden to implement window decorations to its clients. However, this
     approach sacrifices functionality that is taken for granted on modern
     graphical user interfaces. For example, the user may want to switch the
     application focus using a keyboard shortcut or perform window operations and
     the interactions with virtual desktops in a consistent way. If each
     application implemented the functionality of virtual desktops individually,
     the result would hardly be usable. For this reason, it is tempting to move
     window-management functionality into the GUI server and to accept the
     violation of the minimalism principle.
    

    
     The nitpicker GUI server is not the only service challenged by feature
     requests. The problem is present even at the lowest-level services provided
     by core. Core's region-map mechanism is used to manage the virtual address spaces of
     components via their respective PD sessions. When a dataspace is attached to a
     region map, the region map picks a suitable virtual address range where the
     dataspace will be made visible in the virtual address space.
     The allocation strategy depends on several factors such as alignment constraints
     and the address range that fits best. But eventually, it is deterministic.
     This contradicts the common wisdom that address spaces shall be
     randomized. Hence core's PD service is challenged with the request for adding
     address-space randomization as a feature. Unfortunately, the addition of
     such a feature into core raises two issues.
     First, core would need to have a source of good random numbers. But core
     does not contain any device drivers where to draw entropy from.
     With weak entropy, the randomization might be not random enough. In this case,
     the pretension of a security mechanism that is actually ineffective may be
     worse than not having it in the first place.
     Second, the feature would certainly increase the complexity of core.
     This is acceptable for components that potentially benefit from the added
     feature, such as outward-facing network applications. But the complexity
     eventually becomes part of the TCB of all components including those that do
     not benefit from the feature.
    

    	
      
      [image: img/nitpicker_wm]
    
	
       The nitpicker GUI accompanied with a window manager that interposes the nitpicker session interface for the applications on the right. The applications on the left are still able to use nitpicker directly and thereby avoid the complexity added by the window manager.

    


    
     The solution to those kind of problems is the enrichment of existing servers
     by interposing their sessions. Figure img/nitpicker_wm shows a window
     manager implemented as a separate component outside of nitpicker. Both the
     nitpicker GUI server and the window manager provide the nitpicker session
     interface. But the window manager enriches the semantics of the interface
     by adding window decorations and a window-layout policy. Under the hood,
     the window manager uses the real nitpicker GUI server to implement its
     service. From the application's point of view, the use of either service
     is transparent. Security-critical applications can still be routed directly
     to the nitpicker GUI server. So the complexity of the window manager comes
     into effect only for those applications that use it.
    

    
     The same approach can be applied to the address-space randomization problem.
     A component with access to good random numbers may provide a randomized
     version of core's PD service. Outward-facing components can benefit from this
     security feature by having their PD session requests routed to this component
     instead of core.
    

   

   
   
   Ceding the parenthood

   
    
     When using a shell to manage subsystems, the complexity of the shell
     naturally becomes a security risk. A shell can be a text-command interpreter,
     a graphical desktop shell, a web browser that launches subsystems
     as plugins, or a web server that provides a remote administration interface.
     What all those kinds of shells have in common is that they contain
     an enormous amount of complexity that can be attributed to convenience.
     For example, a textual shell usually depends on libreadline, ncurses, or similar
     libraries to provide a command history and to deal with the peculiarities of
     virtual text terminals. A graphical desktop shell is even worse because
     it usually depends on a highly complex widget toolkit, not to mention
     using a web browser as a shell.
     Unfortunately, the functionality provided by these programs cannot be
     dismissed as it is expected by the user. But the high complexity of the
     convenience functions fundamentally contradicts the security-critical
     role of the shell as the common parent of all spawned subsystems. If the
     shell gets compromised, all the spawned subsystems will suffer.
    

    	
      
      [image: img/arora_plugin]
    
	
       A web browser spawns a plugin by ceding the parenthood of the plugin to the trusted loader service.

    


    
     The risk of such convoluted shells can be mitigated by moving the parent role
     for the started subsystems to another component, namely a loader service.
     In contrast to the shell, which should be regarded as untrusted due it its
     complexity, the loader is a small component that is orders of magnitude less
     complex. Figure img/arora_plugin shows a scenario where a web browser is
     used as a shell to spawn a Genode subsystem.
     Instead of spawning the subsystem as the child of the browser, the browser
     creates a loader session. Using the loader-session interface described
     in Section Loader, it can initially import the to-be-executed
     subsystem into the loader session and kick off the execution of the subsystem.
     However, once the subsystem is running, the browser can no longer interfere
     with the subsystem's operation. So security-sensitive information processed within
     the loaded subsystem are no longer exposed to the browser. Still, the lifetime
     of the loaded subsystem depends on the browser. If it decides to close
     the loader session, the loader will destroy the corresponding subsystem.
    

    
     By ceding the parenthood to a trusted component, the risks stemming from the
     complexity of various kinds of shells can be mitigated.
    

   

   
   
   Publishing and subscribing

   
    
     All the mechanisms for transferring data between components presented in Section
     Inter-component communication have in common that data is transferred in a
     peer-to-peer fashion. A client transfers data to a server or
     vice versa. However, there are situations where such a close coupling of both
     ends of communication is not desired. In multicast scenarios, the producer
     of information desires to propagate information without the need to interact
     (or even depend on a handshake) with each individual recipient. Specifically,
     a component might want to publish status information about itself that might
     be useful for other components. For example, a wireless-networking driver may
     report the list of detected wireless networks along with their respective
     SSIDs and reception qualities such that a GUI component can pick up the
     information and present it to the user. Each time, the driver detects a change
     in the ether, it wants to publish an updated version of the list. Such a
     scenario could principally be addressed by introducing a use-case-specific
     session interface, i.e., a "wlan-list" session. But this approach has two
     disadvantages.
    

    
     	
      
       It forces the wireless driver to play an additional server role. Instead
       of pushing information anytime at the discretion of the driver, the driver
       has to actively support the pulling of information from the wlan-list
       client. This is arguably more complex.
      

     

     	
      
       The wlan-list session interface ultimately depends on the capabilities
       of the driver implementation. If an alternative wireless driver is able to
       supplement the list with further details, the wlan-list session interface of
       the alternative driver might look different. As a consequence, the approach is
       likely to introduce many special-purpose session interfaces. This
       contradicts with the goal to promote the composability of components as stated
       at the beginning of Section Common session interfaces.
      

     

    

    
     As an alternative to introducing special-purpose session interfaces for
     addressing the scenarios outlined above, two existing session interfaces can
     be combined, namely ROM and report.
    

    
    
    Report-ROM server

     
      The report-rom server is both a ROM service and a report service. It
      acts as an information broker between information providers (clients of the
      report service) and information consumers (clients of the ROM service).
     

     
      To propagate its internal state to the outside, a component creates a report
      session. From the client's perspective, the posting of information via
      the report session's submit function is a
      fire-and-forget operation, similar to the submission of a signal. But in
      contrast to a signal, which cannot carry any payload, a report is
      accompanied with arbitrary data. For the example above, the wireless driver
      would create a report session. Each time, the list of networks changes, it
      would submit an updated list as a report to the report-ROM server.
     

     
      The report-ROM server stores incoming reports in a database using the client's
      session label as key. Therefore, the wireless driver's report will end up in the
      database under the name of the driver component. If one component wishes to
      post reports of different kinds, it can do so by extending the session label
      by a component-provided label suffix supplied as session-construction argument
      (Section Report). The memory needed as the backing store for the report at
      the report-ROM server is accounted to the report client via the session-quota
      mechanism described in Section Trading memory between clients and servers.
     

     
      In its role of a ROM service, the report-ROM server hands out the reports
      stored in its database as ROM modules. The association of reports with
      ROM sessions is based on the session label of the ROM client. The
      configuration of the report-ROM server contains a list of policies as
      introduced in Section Server-side policy selection. Each policy entry
      is accompanied with a corresponding key into the report database.
     

     
      When a new report comes in, all ROM clients that are associated with the
      report are informed via a ROM-update signal
      (Section Read-only memory (ROM)). Each client can individually respond
      to the signal by following the ROM-module update procedure and thereby
      obtain the new version of the report. From the
      client's perspective, the origin of the information is opaque. It cannot
      decide whether the ROM module is provided by the report-ROM server or
      an arbitrary other ROM service.
     

     
      Coming back to the wireless-driver example, the use of the report-ROM server
      effectively decouples the GUI application from the wireless driver.
      This has the following benefits:
     

     
      	
       
        The application can be developed and tested with an arbitrary ROM server
        supplying an artificially created list of networks.
       

      

      	
       
        There is no need for the introduction of a special-purpose session
        interface between both components.
       

      

      	
       
        The wireless driver can post state updates in an intuitive fire-and-forget
        way without playing an additional server role.
       

      

      	
       
        The wireless driver can be restarted without affecting the application.
       

      

     

    
    
    Poly-instantiation of the report-ROM mechanism

     
      The report-ROM server is a canonical example of a protocol stack
      (Section Protocol stacks). It performs a translation between the
      report-session interface and the ROM-session interface. Being a protocol
      stack, it can be instantiated any number of times. It is up to the system
      integrator whether to use one instance for gathering the reports of many
      report clients, or to instantiate multiple report-ROM servers. Taken to the
      extreme, one report-ROM server could be instantiated per report client. The
      routing of ROM-session requests restricts the access of the ROM clients to
      the different instances. Even in the event that the report-ROM server is
      compromised, the policy for the information flows between the producers and
      consumers of information stays in effect.
     

   

   
   
   Enslaving services

   
    
     In the scenarios described in the previous sections, the relationships
     between clients and servers have been one of the following:
    

    
     	
      
       The client is a sibling of the server within the component tree, or
      

     

     	
      
       The client is a child of a parent that provides a locally-implemented
       service to its child.
      

     

    

    
     However, the Genode architecture allows for a third option: The parent
     can be a client of its own child. Given the discussion in Section
     Client-server relationship, this arrangement looks counter-intuitive
     at first because the discussion concluded that a client has to trust
     the server with respect to the client's liveliness. Here, a call to the server
     would be synonymous to a call to the child. Even though the parent is the
     owner of the child, it would make itself dependent on the child, which is
     generally against the interest of the parent.
    

    
     That said, there is a plausible case where the parent's trust in a
     child is justified: If the parent uses an existing component like a
     3rd-party library. When calling code of a 3rd-party library, the caller
     implicitly agrees
     to yield control to the library and trusts the called function to return
     at some point. The call of a service that is provided by a child corresponds
     to such a library call.
    

    
     By providing the option to host a server as a child component, Genode's
     architecture facilitates the use of arbitrary server components in a
     library-like fashion.
     Because the server performs a useful function but is owned by its client,
     it is called slave.
     An application may aggregate existing protocol-stack components as slaves
     without the need to incorporate the code of the protocol stacks into the
     application.
     For example, by enslaving the report-ROM server introduced in Section
     Publishing and subscribing, an application becomes able to use it as a local
     publisher-subscriber mechanism.
     Another example would be an application that aggregates an instance of the
     nitpicker GUI server for the sole purpose of composing an image out of several
     source images.
     When started, the nitpicker slave requests a framebuffer and an input session.
     The application responds to these requests by handing out locally-implemented sessions so that
     the output of the nitpicker slave becomes visible to the application.
     To perform the image composition, the application creates a nitpicker session
     for each source image and supplies the image data to the virtual framebuffer
     of the respective session.
     After configuring nitpicker views according to the desired layout of the
     final image, the
     application obtains the composed image from nitpicker's
     framebuffer.
    

    
     Note that by calling the slave, the parent does not need to trust the
     slave with respect to the integrity and confidentiality of its internal
     state (see the discussion in Section Client-server relationship). By
     performing the call, only the liveliness of the parent is potentially
     affected. If not trusting the slave to return control once called, the
     parent may take special precautions: A watchdog thread inside the parent
     could monitor the progress of the slave and cancel the call after the
     expiration of a timeout.
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 Development

  
   The Genode OS framework is accompanied by a scalable build system and tooling
   infrastructure that is designed for the creation of highly modular and
   portable systems software.
   Understanding the underlying concepts is important for leveraging the full
   potential of the framework.
   This chapter complements Chapter Getting started with the explanation of the
   coarse-grained source-tree structure (Section Source-code repositories),
   the integration
   of 3rd-party software (Section Integration of 3rd-party software),
   the build system (Section Build system), and system-integration tools
   (Section System integration and automated testing).
   Furthermore, it describes the project's development process in Section
   Git flow.
  

  
  
  Source-code repositories

   
    As briefly introduced in Section Source-tree structure, Genode's source tree
    is organized in the form of several source-code repositories. This
    coarse-grained modularization of the source code has the following benefits:
   

   
    	
     
      Source codes of different concerns remain well separated.
      For example, the platform-specific code for each base
      platform is located in a dedicated base-<platform> repository.
     

    

    	
     
      Different abstraction levels and features of the system can be maintained
      in different source-code repositories.
      Whereby the source code contained in the os repository is free from any
      dependency from 3rd-party software, the components hosted in the libports
      repository are free to use foreign code.
     

    

    	
     
      Custom developments and experimental features can be hosted in dedicated
      source-code repositories, which do not interfere with Genode's source
      tree. Such a custom repository can be managed independently from Genode
      using arbitrary revision-control systems.
     

    

   

   
    The build-directory configuration defines the set of repositories to
    incorporate into the build process. At build time, the build system overlays
    the directory structures of all selected repositories
    to form a single logical source tree. The selection of source-code
    repositories ultimately defines the view of the build system on the source
    tree.
   

   
    Note that the order of the repositories as configured in the build
    configuration (in etc/build.conf) is important. Front-most repositories
    shadow subsequent repositories.
    This makes the repository mechanism a powerful tool for tweaking
    existing repositories: By adding a custom repository in front of another one,
    customized versions of single files (e.g., header files or target description
    files) can be supplied to the build system without changing the original
    repository.
   

   
    Each source-code repository has the principle structure shown in Table
    1.
   

   
   
   

   
   
    	  Directory
    	 Description
   

    	  doc/
    	 Documentation, specific for the repository
   

    	  etc/
    	 Default configuration for the build process
   

    	  mk/
    	 Build-system supplements
   

    	  include/
    	 Globally visible header files
   

    	  src/
    	 Source codes and target build descriptions
   

    	  lib/mk/
    	 Library build descriptions
   

    	  lib/import/
    	 Library import descriptions
   

    	  ports/
    	 Port descriptions of 3rd-party software
   

   

   
   Table 1: Structure of a source-code repository. Depending on the repository, only a subset of those directories may be present.
   

  
  
  Integration of 3rd-party software

   
    Downloaded 3rd-party source code resides outside of the actual repository at
    the central <genode-dir>/contrib/ directory. This structure has the
    following benefits over hosting 3rd-party source code along with Genode's
    genuine source code:
   

   
    	
     
      Working with grep within the repositories works very efficient because
      downloaded and extracted 3rd-party code is not in the way. Such code
      resides next to the repositories.
     

    

    	
     
      Storing all build directories and downloaded 3rd-party source code somewhere
      outside the Genode source tree, e.g., on different disk partitions, can
      be easily accomplished by creating symbolic links for the build/
      and contrib/ directories.
     

    

   

   
    The contrib/ directory is managed using the tools at
    <genode-dir>/tool/ports/.
   

   
    	Obtain a list of available ports

    	

 tool/ports/list


    

    	Download and install a port

    	

 tool/ports/prepare_port <port-name>


    

   


   
    The prepare_port tool scans all repositories under repos/ for the specified
    port and installs the port into contrib/. Each version
    of an installed port resides in a dedicated subdirectory within the contrib/
    directory. The port-specific directory is called port directory. It is named
    <port-name>-<fingerprint>. The <fingerprint> uniquely identifies
    the version of the port (it is a SHA256 hash of the ingredients of the
    port). If two versions of the same port are installed, each of them will
    have a different fingerprint. So they end up in different directories.
   

   
    Within a source-code repository, a port is represented by two files, a
    <port-name>.port and a <port-name>.hash file. Both files reside at the
    ports/ subdirectory of the corresponding repository. The
    <port-name>.port file is the port description, which declares the
    ingredients of the port, e.g., the archives to download and the patches to apply.
    The <port-name>.hash file contains the fingerprint of the corresponding
    port description, thereby uniquely identifying a version of the port
    as expected by the checked-out Genode version.
   

   
    For step-by-step instructions on how to add a port using the mechanism,
    please refer to the porting guide:
   

   
    	Genode Porting Guide

    	
     
      http://genode.org/documentation/developer-resources/porting
     

    

   


  
  
  Build system

   
   
   Build directories

   
    
     The build system is supposed to never touch the source tree. The procedure of
     building components and integrating them into system scenarios is performed
     within a distinct build directory. One build directory targets a specific
     kernel and hardware platform. Because the source tree is decoupled
     from the build directory, one source tree can have many different build
     directories associated, each targeted at a different platform.
    

    
     The recommended way for creating a build directory is the use of the
     create_builddir tool located at <genode-dir>/tool/.
     The tool prints usage information along with a list of supported base
     platforms when started without arguments.
     For creating a new build directory, one of the listed target platforms must be
     specified. By default, the new build directory is created at
     <genode-dir>/build/<platform>/ where <platform> corresponds to the
     specified argument.
     Alternatively, the default location can be overridden via the optional
     BUILD_DIR= argument. For example:
    


 cd <genode-dir>
 ./tool/create_builddir x86_64 BUILD_DIR=/tmp/build.x86_64


    
     This command creates a new build directory for the 64-bit x86 platform
     at /tmp/build.x86_64/.
     For the basic operations available from within the build directory, please
     refer to Section Using the build system.
    

    
    
    Configuration

     
      Each build directory contains a Makefile, which is a symbolic link to
      tool/builddir/build.mk. The makefile is the front end of the build system
      and not supposed to be edited. Besides the makefile, there is an etc/
      subdirectory that contains the build-directory configuration. For most
      platforms, there exists merely a single build.conf file, which defines the
      source-code repositories to be incorporated into the build process along
      with the parameters for the run tool explained in Section Run tool.
     

     
      The selection of source-code repositories is defined by the REPOSITORIES
      declaration, which contains a list of directories.
      The etc/build.conf file as found in a freshly created build directory is
      preconfigured to select the source-code repositories
      base-<platform>, base, os, and demo.
      There are a number of commented-out lines that can be uncommented for
      enabling additional repositories.
     

    
    
    Cleaning

     
      To remove all but kernel-related generated files, use
     


 make clean


     
      To remove all generated files, use
     


 make cleanall


     
      Both clean and cleanall won't remove any files from the bin/
      subdirectory. This makes the bin/ a safe place for files that are
      unrelated to the build process, yet are required for the integration stage, e.g.,
      binary data.
     

    
    
    Controlling the verbosity

     
      To understand the inner workings of the build process in more detail, you can
      tell the build system to display each directory change by specifying
     


 make VERBOSE_DIR=


     
      If you are interested in the arguments that are passed to each invocation of
      make, you can make them visible via
     


 make VERBOSE_MK=


     
      Furthermore, you can observe each single shell-command invocation by specifying
     


 make VERBOSE=


     
      Of course, you can combine these verboseness toggles for maximizing the noise.
     

   

   
   
   Target descriptions

   
    
     Each build target is represented by a corresponding target.mk file within
     the src/ subdirectory of a source-code repository.
     This file declares the name of the target, the source codes to be incorporated
     into the target, and the libraries the target depends on.
     The build system evaluates target descriptions using make. Hence, the syntax
     corresponds to the syntax of makefiles and the principle functionality
     of make is available for target.mk files. For example, it is possible to
     define custom rules as done in
     Section Building tools to be executed on the host platform.
    

    
    
    Target declarations

     
      	TARGET

      	
       
        is the name of the binary to be created. This is the
        only mandatory variable to be defined in each target.mk file.
       

      

      	LIBS

      	
       
        is the list of libraries that are used by the target.
       

      

      	SRC_CC

      	
       
        contains the list of .cc source files. The default search location
        for source codes is the directory where the target.mk file resides.
       

      

      	SRC_C

      	
       
        contains the list of .c source files.
       

      

      	SRC_S

      	
       
        contains the list of assembly .s source files.
       

      

      	SRC_BIN

      	
       
        contains binary data files to be linked to the target.
       

      

      	INC_DIR

      	
       
        is the list of include search locations. Directories should
        always be appended by using +=.
       

      

      	REQUIRES

      	
       
        expresses the requirements that must be satisfied in order to
        build the target. More details about the underlying mechanism is provided
        by Section Platform specifications.
       

      

      	CC_OPT

      	
       
        contains additional compiler options to be used for .c as
        well as for .cc files.
       

      

      	CC_CXX_OPT

      	
       
        contains additional compiler options to be used for the
        C++ compiler only.
       

      

      	CC_C_OPT

      	
       
        contains additional compiler options to be used for the
        C compiler only.
       

      

      	EXT_OBJECTS

      	
       
        is a list of external objects or libraries. This
        declaration is merely used for interfacing Genode with legacy software
        components.
       

      

     


    
    
    Specifying search locations

     
      When specifying search locations for header files via the INC_DIR variable or
      for source files via vpath, the use of relative pathnames is illegal. Instead,
      the following variables can be used to reference locations within the
      source-code repository where the target resides:
     

     
      	REP_DIR

      	
       
        is the base directory of the target's source-code repository.
        Normally, specifying locations relative to the base of the repository is
        rarely used by target.mk files but needed by library descriptions.
       

      

      	PRG_DIR

      	
       
        is the directory where the target.mk file resides. This
        variable is always to be used when specifying a relative path.
       

      

      	$(callselect_from_repositories,path/relative/to/repo)

      	
       
        This function returns the absolute path for the given repository-relative
        path by looking at all source-code repositories in their configured order.
        Hereby, it is possible to access files or directories that are outside
        the target's source-code repository.
       

      

      	$(callselect_from_ports,<port-name>)

      	
       
        This function returns the absolute path for the contrib directory of the
        specified <port-name>. The contrib directory is located at
        <genode-dir>/contrib/<port-name>-<fingerprint> whereby <fingerprint>
        uniquely identifies the version of the port as expected by the current state
        of the Genode source tree.
       

      

     


   

   
   
   Library descriptions

   
    
     In contrast to target descriptions that are scattered across the whole source
     tree, library descriptions are located at the central place lib/mk. Each
     library corresponds to a <libname>.mk file. The base of the description file
     is the name of the library. Therefore, no TARGET variable needs to be
     defined.
     The location of source-code files is usually defined relative to $(REP_DIR).
     Library-description files support the following additional declaration:
    

    
     	SHARED_LIB=yes

     	
      
       declares that the library should be built as a shared
       object rather than a static library. The resulting object will be called
       <libname>.lib.so.
      

     

    


   

   
   
   Platform specifications

   
    
     Building components for different platforms likely implicates that portions of
     code are tied to certain aspects of the target platform. For example, target
     platforms may differ in the following respects:
    

    
     	
      
       The API of the used kernel,
      

     

     	
      
       The hardware architecture such as x86, ARMv7,
      

     

     	
      
       Certain hardware facilities such as a custom device, or
      

     

     	
      
       Other considerations such as software license requirements.
      

     

    

    
     Each of those aspects may influence the build process in different ways.
     The build system provides a generic mechanism to steer the build process
     according to such aspects.
     Each aspect is represented by a tag called spec value.
     Any platform targeted by Genode can be characterized by a set of such spec
     values.
    

    
     The developer of a software component knows the constraints of his
     software and thus specifies these requirements in the build-description
     file of the component.
     The system integrator defines the platform the software will be
     built for by specifying the targeted platform in the SPECS declaration in the
     build directory's etc/specs.conf file.
     In addition to the (optional) etc/specs.conf
     file within the build directory, the build system incorporates all
     etc/specs.conf files found in the enabled repositories. For example, when
     using the Linux kernel as a platform, the base-linux/etc/specs.conf file is
     picked up automatically. The build directory's specs.conf file can still be
     used to extend the SPECS declarations, for example to enable special features.
    

    
     Each <spec> in the SPECS variable instructs the build system to
    

    
     	
      
       Include the make-rules of a corresponding base/mk/spec/<specname>.mk
       file. This enables the customization of the build process for each platform.
      

     

     	
      
       Search for <libname>.mk files in the lib/mk/spec/<specname>/ subdirectory.
       This way, alternative implementations of one and the same
       library interface can be selected depending on the platform specification.
      

     

    

    
     Before a target or library gets built, the build system checks if the REQUIRES
     entries of the build description file are satisfied by entries of the SPECS
     variable. The compilation is executed only if each entry in the REQUIRES
     variable is present in the SPECS variable as supplied by the build directory
     configuration.
    

   

   
   
   Building tools to be executed on the host platform

   
    
     Sometimes, software requires custom tools that are used to generate source
     code or other ingredients for the build process, for example IDL compilers.
     Such tools won't be executed on top of Genode but on the host platform
     during the build process. Hence, they must be compiled with the tool chain
     installed on the host, not the Genode tool chain.
    

    
     The build system accommodates the building of such host tools as a side
     effect of building a library or a target. Even though it is possible to add
     the tool-compilation step to a regular build description file, it is
     recommended to introduce a dedicated pseudo library for building such tools.
     This way, the rules for building host tools are kept separate from rules that
     refer to regular targets. By convention, the pseudo library should be named
     <package>_host_tools and the host tools should be built at
     <build-dir>/tool/<package>/ where <package> refers to the name of the
     software package the tool belongs to, e.g., qt5 or mupdf. To build a tool
     named <tool>, the pseudo library contains a custom make rule like the
     following:
    


 $(BUILD_BASE_DIR)/tool/<package>/<tool>:
     $(MSG_BUILD)$(notdir $@)
     $(VERBOSE)mkdir -p $(dir $@)
     $(VERBOSE)...build commands...


    
     To let the build system trigger the rule, add the custom target to the
     HOST_TOOLS variable:
    


 HOST_TOOLS += $(BUILD_BASE_DIR)/tool/<package>/<tool>


    
     Once the pseudo library for building the host tools is in place, it can be
     referenced by each target or library that relies on the respective tools via
     the LIBS declaration. The tool can be invoked by referring to
     $(BUILD_BASE_DIR)/tool/<package>/tool.
    

    
     For an example of using custom host tools, please refer to the mupdf package
     found within the libports repository. During the build of the mupdf library,
     two custom tools fontdump and cmapdump are invoked. The tools are built via
     the lib/mk/mupdf_host_tools.mk library description file. The actual mupdf
     library (lib/mk/mupdf.mk) has the pseudo library mupdf_host_tools listed
     in its LIBS declaration and refers to the tools relative to
     $(BUILD_BASE_DIR).
    

   

   
   
   Building 3rd-party software

   
    
     The source code of 3rd-party software is managed by the mechanism presented in
     Section Integration of 3rd-party software. Once prepared, such source codes
     resides in a subdirectory of <genode-dir>/contrib/.
    

    
     If the build system encounters a target that incorporates
     ported source code (that is, a build-description file that calls the
     select_from_ports function), it looks up the respective <port-name>.hash
     file in the
     repositories as specified in the build configuration. The fingerprint found in
     the hash file is used to construct the path to the port directory under
     contrib/. If that lookup fails, a meaningful error is printed. Any number of
     versions of the same port can be installed at the same time. I.e., when
     switching Git branches that use different versions of the same port, the build
     system automatically finds the right port version as expected by the currently
     active branch.
    

   

  
  
  System integration and automated testing

   
    Genode's portability across kernels and hardware platforms is one of the prime
    features of the framework. However, each kernel or hardware platform requires
    different considerations when it comes to system configuration, integration, and
    booting. When using a particular kernel, profound knowledge
    about the boot concept and the kernel-specific tools is required. To
    streamline the testing of system scenarios across the many different supported
    kernels and hardware platforms, the framework is equipped with tools that
    relieve the system integrator from these peculiarities.
   

   
   
   Run tool

   
    
     The centerpiece of the system-integration infrastructure is the so-called run
     tool. Directed by a script (run script), it performs all the steps necessary to
     test a system scenario. Those steps are:
    

    
     	
      
       Building the components of a scenario
      

     

     	
      
       Configuration of the init component
      

     

     	
      
       Assembly of the boot directory
      

     

     	
      
       Creation of the boot image
      

     

     	
      
       Powering-on the test machine
      

     

     	
      
       Loading of the boot image
      

     

     	
      
       Capturing the LOG output
      

     

     	
      
       Validation of the scenario's behavior
      

     

     	
      
       Powering-off the test machine
      

     

    

    
     Each of those steps depends on various parameters such as the
     used kernel, the hardware platform used to execute the scenario, the
     way the test hardware is connected to the test infrastructure
     (e.g., UART, AMT, JTAG, network), the way the test hardware is powered or
     reset, or the way of how the scenario is loaded into the test hardware.
     To accommodate the variety of combinations of these
     parameters, the run tool consists of an extensible library of modules.
     The selection and configuration of the modules is expressed in the run-tool
     configuration. The following types of modules exist:
    

    
     	boot-dir modules

     	
      
       These modules contain the functionality to populate the boot directory
       and are specific to each kernel. It is mandatory to always include the
       module corresponding to the used kernel.
      

      
       (the available modules are: linux, hw, okl4, fiasco, pistachio, nova,
       sel4, foc)
      

     

     	image modules

     	
      
       These modules are used to wrap up all components used by the run script
       in a specific format and thereby prepare them for execution.
       Depending on the used kernel, different formats can be used. With these
       modules, the creation of ISO and disk images is also handled.
      

      
       (the available modules are: uboot, disk, iso)
      

     

     	load modules

     	
      
       These modules handle the way the components are transfered to the
       target system. Depending on the used kernel there are various options
       to pass on the components. For example, loading from TFTP or via JTAG is handled
       by the modules of this category.
      

      
       (the available modules are: tftp, jtag, fastboot, ipxe)
      

     

     	log modules

     	
      
       These modules handle how the output of a currently executed run script
       is captured.
      

      
       (the available modules are: qemu, linux, serial, amt)
      

     

     	power_on modules

     	
      
       These modules are used for bringing the target system into a defined
       state, e.g., by starting or rebooting the system.
      

      
       (the available modules are: qemu, linux, softreset, amt, netio)
      

     

     	power_off modules

     	
      
       These modules are used for turning the target system off after the
       execution of a run script.
      

     

    


    
     Each module has the form of a script snippet located under the
     tool/run/<step>/
     directory where <step> is a subdirectory named after the module type.
     Further instructions about the use of each module (e.g., additional
     configuration arguments) can be found in the form of comments inside the
     respective script snippets.
     Thanks to this modular structure,
     an extension of the tool kit comes down to adding a file at the corresponding
     module-type subdirectory. This way, custom work flows (such as tunneling JTAG
     over SSH) can be accommodated fairly easily.
    

   

   
   
   Run-tool configuration examples

   
    
     To execute a run script, a combination of modules may be used. The combination
     is controlled via the RUN_OPT declaration contained in the build directory's
     etc/build.conf file.
     The following examples illustrate the selection and configuration of different
     run modules:
    

    
    
    Executing NOVA in Qemu


RUN_OPT = --include boot_dir/nova \
          --include power_on/qemu --include log/qemu --include image/iso


     
      By including boot_dir/nova, the run tool assembles a boot directory equipped
      with a boot loader and a boot-loader configuration that is able to bootstrap
      the NOVA kernel. The combination of the modules power_on/qemu and log/qemu
      prompts the run tool to spawn the Qemu emulator with the generated boot image
      and fetch the log output of the emulated machine from its virtual comport.
      The specification of image/iso tells the run tool to use a bootable
      ISO image as a boot medium as opposed to a disk image.
     

    
    
    Executing NOVA on a real x86 machine using AMT

     
      The following example uses Intel's advanced management technology (AMT)
      to remotely reset a physical target machine (power_on/amt)
      and capture the serial output over network (log/amt). In contrast to the
      example above, the system scenario is supplied via TFTP (load/tftp). Note
      that the example requires a working network-boot setup including a TFTP
      server, a DHCP server, and a PXE boot loader.
     


RUN_OPT = --include boot_dir/nova \
          --include power_on/amt \
                  --power-on-amt-host 10.23.42.13 \
                  --power-on-amt-password 'foo!' \
          --include load/tftp \
                  --load-tftp-base-dir /var/lib/tftpboot \
                  --load-tftp-offset-dir /x86 \
          --include log/amt \
                  --log-amt-host 10.23.42.13 \
                  --log-amt-password 'foo!'


     
      If the test machine has a comport connection to the machine where the run
      tool is executed, the log/serial module may be used instead of 'log/amt':
     


 --include log/serial --log-serial-cmd 'picocom -b 115200 /dev/ttyUSB0'


    
    
    Executing base-hw on a Raspberry Pi

     
      The following example boots a system scenario based on the base-hw kernel on
      a Raspberry Pi that is powered via a network-controllable power plug (netio).
      The Raspberry Pi is connected to a JTAG debugger, which is used to load the
      system image onto the device.
     


RUN_OPT = --include boot_dir/hw \
          --include power_on/netio \
                  --power-on-netio-ip 10.23.42.5 \
                  --power-on-netio-user admin \
                  --power-on-netio-password secret \
                  --power-on-netio-port 1 \
          --include power_off/netio \
                  --power-off-netio-ip 10.23.42.5 \
                  --power-off-netio-user admin \
                  --power-off-netio-password secret \
                  --power-off-netio-port 1 \
          --include load/jtag \
          --load-jtag-debugger \
              /usr/share/openocd/scripts/interface/flyswatter2.cfg \
          --load-jtag-board \
              /usr/share/openocd/scripts/interface/raspberrypi.cfg \
          --include log/serial \
                  --log-serial-cmd 'picocom -b 115200 /dev/ttyUSB0'


   

   
   
   Meaningful default behaviour

   
    
     The create_builddir tool introduced in Section Using the build system
     equips a freshly created build directory with a meaningful
     default configuration that depends on the selected platform and the used
     kernel. For example, when creating a build directory for the x86_64 base
     platform and building a scenario with KERNEL=linux, RUN_OPT is
     automatically defined as
    


 RUN_OPT = --include boot_dir/linux \
           --include power_on/linux --include log/linux


   

   
   
   Run scripts

   
    
     Using run scripts, complete system scenarios can be described in a
     concise and kernel-independent way. As
     described in Section A simple system scenario, a run script can be used
     to integrate and test-drive the scenario directly from the build directory.
     The best way to get acquainted with the concept is by reviewing the run script
     for the hello-world example presented in Section Defining a system scenario.
     It performs the following steps:
    

    
     	
      
       Building the components needed for the system using the build command.
       This command instructs the build system to compile the targets listed in
       the brace block. It has the same effect as manually invoking make with
       the specified argument from within the build directory.
      

     

     	
      
       Creating a new boot directory using the create_boot_directory command.
       The integration of the scenario is performed in a dedicated directory at
       <build-dir>/var/run/<run-script-name>/. When the run script is finished,
       this boot directory will contain all components of the final system.
      

     

     	
      
       Installing the configuration for the init component into the boot directory
       using the
       install_config command. The argument to this command will be written
       to a file called config within the boot directory. It will eventually
       be loaded as boot module and made available by core's ROM service
       to the init component. The configuration of init is explained in
       Chapter System configuration.
      

     

     	
      
       Creating a bootable system image using the build_boot_image command.
       This command copies the specified list of files from the <build-dir>/bin/
       directory to the boot directory and executes the steps
       needed to transform the content of the boot directory into a bootable
       form.
       Under the hood, the run tool invokes the run-module types boot_dir and
       boot_image.
       Depending on the run-tool configuration, this form may be an ISO
       image, a disk image, or a bootable ELF image.
      

     

     	
      
       Executing the system image using the run_genode_until command. Depending
       on the run-tool configuration,
       the system image is executed using an emulator or a physical machine.
       Under the hood, this step invokes the run modules of the types
       power_on, load, log, and power_off.
       For most platforms, Qemu is used by default. On Linux,
       the scenario is executed by starting core directly from the boot
       directory. The run_genode_until command takes a regular expression
       as argument. If the log output of the scenario matches the specified
       pattern, the run_genode_until command returns. If specifying forever
       as argument, this command will never return.
       If a regular expression is specified, an additional argument determines
       a timeout in seconds. If the regular expression does not match until
       the timeout is reached, the run script will abort.
      

     

    

    
     After the successful completion of a run script, the run tool prints the
     message "Run script execution successful.".
    

    
     Note that the hello.run script does not contain kernel-specific information.
     Therefore it can be executed from the build directory of any base platform
     via the command makerun/helloKERNEL=<kernel>.
     When invoking make with an argument of the form run/<run-script>, the
     build system searches all repositories for a run script with the specified name.
     The run script must be located in one of the repositories' run/ subdirectories
     and have the file extension .run.
    

   

   
   
   The run mechanism explained

   
    
     The run tool is based on expect, which is an extension of the Tcl scripting
     language that allows for the scripting of interactive command-line-based
     programs.
     When the user invokes a run script via make run/<run-script>, the build
     system invokes
     the run tool at <genode-dir>/tool/run/run with the run script and the
     content of the RUN_OPT definition as arguments. The
     run tool is an expect script that has no other purpose than defining several
     commands used by run scripts and including the run modules as specified by the
     run-tool configuration.
     Whereas tool/run/run provides the generic commands, the run modules under
     tool/run/<module>/ contain all the peculiarities of the various kernels
     and boot strategies.
     The run modules thereby document
     precisely how the integration and boot concept works
     for each kernel platform.
    

    
    
    Run modules

     
      Each module consist of an expect source file located in one of the existing
      directories of a category. It is named implicitly by its location and the
      name of the source file, e.g. image/iso is the name of the image module
      that creates an ISO image.
      The source file contains one mandatory function:
     


 run_<module> { <module-args> }


     
      The function is called if the step is executed by the run tool. If its
      execution was successful, it returns true and otherwise false. Certain modules
      may also call exit on failure.
     

     
      A module may have arguments, which are - by convention - prefixed with the name
      of the module, e.g., power_on/amt has an argument called
      power-on-amt-host. By convention, the modules contain accessor functions
      for argument values. For example, the function power_on_amt_host in the run module
      power_on/amt returns the value supplied to the argument power-on-amt-host.
      Thereby, a run script can access the value of such arguments
      in a defined way by calling power_on_amt_host. Also, arguments without a value
      are treated similarly. For example, for querying the presence of the argument
      image-uboot-no-gzip, the run module run/image/uboot
      provides the corresponding function image_uboot_use_no_gzip.
      In addition to these functions, a module may have additional public
      functions. Those functions may be used by run scripts or other modules.
      To enable a run script or module to query the presence of another module,
      the run tool provides the function have_include. For example, the presence of
      the load/tftp module can be checked by calling have_include with the
      argument "load/tftp".
     

   

   
   
   Using run scripts to implement integration tests

   
    
     Because run scripts are actually expect scripts, the whole arsenal of
     language features of the Tcl scripting language is available to them. This
     turns run scripts into powerful tools for the automated execution of test
     cases. A good example is the run script at repos/libports/run/lwip.run,
     which tests the lwIP stack by running a simple Genode-based HTTP server on the
     test machine. It fetches and validates a HTML page from this server. The run
     script makes use of a regular expression as argument to the run_genode_until
     command to detect the state when the web server becomes ready, subsequently
     executes the lynx shell command to fetch the web site, and employs Tcl's
     support for regular expressions to validate the result. The run script works
     across all platforms that have network support.
     To accommodate a high diversity of platforms, parts of the run script depend
     on the spec values as defined for the build directory. The spec values
     are probed via the have_spec function. Depending on the probed spec
     values, the run script uses the append_if and lappend_if commands
     to conditionally assemble the init configuration and the list of boot modules.
    

    
     To use the run mechanism efficiently, a basic understanding of the Tcl
     scripting language is required. Furthermore the functions provided by
     tool/run/run and the run modules at tool/run/ should be studied.
    

   

   
   
   Automated testing across base platforms

   
    
     To execute one or multiple test cases on more than one base platform, there
     exists a dedicated tool at tool/autopilot. Its primary purpose is the
     nightly execution of test cases. The tool takes a list of platforms and of
     run scripts as arguments and executes each run script on each platform. The
     build directory for each platform is created at
     /tmp/autopilot.<username>/<platform> and the output of each run script is
     written to a file called <platform>.<run-script>.log. On stderr, autopilot
     prints the statistics about whether or not each run script executed
     successfully on each platform. If at least one run script failed, autopilot
     returns a non-zero exit code, which makes it straight forward to include
     autopilot into an automated build-and-test environment.
    

   

  
  
  Package management

   
    The established system-integration work flow with Genode is based on the run
    tool as explained in the previous section. It automates the building,
    configuration, integration, and testing of Genode-based systems. Whereas the
    run tool succeeds in overcoming the challenges that come with Genode's
    diversity of kernels and supported hardware platforms, its scalability is
    somewhat limited to appliance-like system scenarios: The result of the
    integration process is a system image with a certain feature set. Whenever
    requirements change, the system image is replaced with a freshly created image
    that takes those requirements into account. In practice, there are two
    limitations of this system-integration approach:
   

   
    First, since the run tool implicitly builds all components required for a
    system scenario, the system integrator has to compile all components from
    source. For example, if a system includes a component based on Qt5, one needs to
    compile the entire Qt5 application framework, which induces significant
    overhead to the actual system-integration tasks of composing and configuring
    components.
   

   
    Second, general-purpose systems tend to become too complex and diverse to be
    treated as system images. When looking at commodity OSes, each installation
    differs with respect to the installed set of applications, user preferences,
    used device drivers and system preferences. A system based on the run tool's
    work flow would require the user to customize the run script of the system for
    each tweak. To stay up to date, the user would need to re-create the
    system image from time to time while manually maintaining any customizations.
    In practice this is a burden very few end users are willing to endure.
   

   
    The primary goal of Genode's package management is to overcome these
    scalability limitations, in particular:
   

   
    	
     
      Alleviating the need to build everything that goes into system scenarios
      from scratch,
     

    

    	
     
      Facilitating modular system compositions while abstracting from technical
      details,
     

    

    	
     
      On-target system update and system development,
     

    

    	
     
      Assuring the user that system updates are safe to apply by providing the
      ability to easily roll back the system or parts thereof to previous versions,
     

    

    	
     
      Securing the integrity of the deployed software,
     

    

    	
     
      Low friction for existing developers.
     

    

   

   
    The design of Genode's package-management concept is largely influenced by Git
    as well as the Nix package manager. In particular
    the latter opened our eyes to discover the potential that lies beyond the
    package management employed in state-of-the art commodity systems. Even though
    we considered adapting Nix for Genode and actually conducted intensive
    experiments in this direction, we settled on a custom solution that leverages
    Genode's holistic view on all levels of the operating system including the
    build system and tooling, source structure, ABI design, framework API, system
    configuration, inter-component interaction, and the components itself. Whereby
    Nix is designed for being used on top of Linux, Genode's whole-systems view
    led us to simplifications that eliminated the needs for Nix' powerful features
    like its custom description language.
   

   
   
   Nomenclature

   
    
     When speaking about "package management", one has to clarify what a "package"
     in the context of an operating system represents. Traditionally, a package
     is the unit of delivery of a bunch of "dumb" files, usually wrapped up in
     a compressed archive. A package may depend on the presence of other
     packages. Thereby, a dependency graph is formed. To express how packages fit
     with each other, a package is usually accompanied with meta data
     (description). Depending on the package manager, package descriptions follow
     certain formalisms (e.g., package-description language) and express
     more-or-less complex concepts such as versioning schemes or the distinction
     between hard and soft dependencies.
    

    
     Genode's package management does not follow this notion of a "package".
     Instead of subsuming all deliverable content under one term, we distinguish
     different kinds of content, each in a tailored and simple form. To avoid the
     clash of the notions of the common meaning of a "package", we speak of
     "archives" as the basic unit of delivery. The following subsections introduce
     the different categories.
     Archives are named with their version as suffix, appended via a slash. The
     suffix is maintained by the author of the archive. The recommended naming
     scheme is the use of the release date as version suffix, e.g.,
     report_rom/2017-05-14.
    

    
    
    Raw-data archive

     
      A raw-data archive contains arbitrary data that is - in contrast to executable
      binaries - independent from the processor architecture. Examples are
      configuration data, game assets, images, or fonts. The content of raw-data
      archives is expected to be consumed by components at runtime. It is not
      relevant for the build process of executable binaries. Each raw-data
      archive contains merely a collection of data files. There is no meta data.
     

    
    
    API archive

     
      An API archive has the structure of a Genode source-code repository. It may
      contain all the typical content of such a source-code repository such as header
      files (in the include/ subdirectory), source codes (in the src/
      subdirectory), library-description files (in the lib/mk/ subdirectory), or
      ABI symbols (lib/symbols/ subdirectory). At the top level, a LICENSE file is
      expected that clarifies the license of the contained source code. There is no
      meta data contained in an API archive.
     

     
      An API archive is meant to provide ingredients for building components. The
      canonical example is the public programming interface of a library (header
      files) and the library's binary interface in the form of an ABI-symbols file.
      One API archive may contain the interfaces of multiple libraries. For example,
      the interfaces of libc and libm may be contained in a single "libc" API
      archive because they are closely related to each other. Conversely, an API
      archive may contain a single header file only. The granularity of those
      archives may vary. But they have in common that they are used at build time
      only, not at runtime.
     

    
    
    Source archive

     
      Like an API archive, a source archive has the structure of a Genode
      source-tree repository and is expected to contain all the typical content of
      such a source repository along with a LICENSE file. But unlike an API archive,
      it contains descriptions of actual build targets in the form of Genode's usual
      target.mk files.
     

     
      In addition to the source code, a source archive contains a file
      called used_apis, which contains a list of API-archive names with each
      name on a separate line. For example, the used_apis file of the report_rom
      source archive looks as follows:
     


 base/2017-05-14
 os/2017-05-13
 report_session/2017-05-13


     
      The used_apis file declares the APIs needed to incorporate into the build
      process when building the source archive. Hence, they represent build-time
      dependencies on the specific API versions.
     

     
      A source archive may be equipped with a top-level file called api containing
      the name of exactly one API archive. If present, it declares that the source
      archive implements the specified API. For example, the libc/2017-05-14
      source archive contains the actual source code of the libc and libm as well as
      an api file with the content libc/2017-04-13. The latter refers to the API
      implemented by this version of the libc source package (note the differing
      versions of the API and source archives)
     

    
    
    Binary archive

     
      A binary archive contains the build result of the equally-named source archive
      when built for a particular architecture. That is, all files that would appear
      in the <build-dir>/bin/ subdirectory when building all targets present in
      the source archive. There is no meta data present in a binary archive.
     

     
      A binary archive is created out of the content of its corresponding source
      archive and all API archives listed in the source archive's used_apis file.
      Note that since a binary archive depends on only one source archive, which
      has no further dependencies, all binary archives can be built independently
      from each other.
      For example, a libc-using application needs the source code of the
      application as well as the libc's API archive (the libc's header file and
      ABI) but it does not need the actual libc library to be present.
     

    
    
    Package archive

     
      A package archive contains an archives file with a list of archive names
      that belong together at runtime. Each listed archive appears on a separate line.
      For example, the archives file of the package archive for the window
      manager wm/2018-02-26 looks as follows:
     


 genodelabs/raw/wm/2018-02-14
 genodelabs/src/wm/2018-02-26
 genodelabs/src/report_rom/2018-02-26
 genodelabs/src/decorator/2018-02-26
 genodelabs/src/floating_window_layouter/2018-02-26


     
      In contrast to the list of used_apis of a source archive, the content of
      the archives file denotes the origin of the respective archives
      ("genodelabs"), the archive type, followed by the versioned name of the
      archive.
     

     
      An archives file may specify raw archives, source archives, or package
      archives (as type pkg). It thereby allows the expression of _runtime
      dependencies_. If a package archive lists another package archive, it inherits
      the content of the listed archive. This way, a new package archive may easily
      customize an existing package archive.
     

     
      A package archive does not specify binary archives directly as they differ
      between the architecture and are already referenced by the source archives.
     

     
      In addition to an archives file, a package archive is expected to contain
      a README file explaining the purpose of the collection.
     

   

   
   
   Depot structure

   
    
     Archives are stored within a directory tree called depot/. The depot
     is structured as follows:
    


 <user>/pubkey
 <user>/download
 <user>/src/<name>/<version>/
 <user>/api/<name>/<version>/
 <user>/raw/<name>/<version>/
 <user>/pkg/<name>/<version>/
 <user>/bin/<arch>/<src-name>/<src-version>/


    
     The <user> stands for the origin of the contained archives. For example, the
     official archives provided by Genode Labs reside in a genodelabs/
     subdirectory. Within this directory, there is a pubkey file with the
     user's public key that is used to verify the integrity of archives downloaded
     from the user. The file download specifies the download location as an URL.
    

    
     Subsuming archives in a subdirectory that correspond to their origin
     (user) serves two purposes. First, it provides a user-local name space for
     versioning archives. E.g., there might be two versions of a
     nitpicker/2017-04-15 source archive, one by "genodelabs" and one by
     "nfeske". However, since each version resides in its origin's subdirectory,
     version-naming conflicts between different origins cannot happen. Second, by
     allowing multiple archive origins in the depot side-by-side, package archives
     may incorporate archives of different origins, which fosters the goal of a
     federalistic development, where contributions of different origins can be
     easily combined.
    

    
     The actual archives are stored in the subdirectories named after the archive
     types (raw, api, src, bin, pkg). Archives contained in the bin/
     subdirectories are further subdivided in the various architectures (like
     x86_64, or arm_v7).
    

   

   
   
   Depot management

   
    
     The tools for managing the depot content reside under the tool/depot/
     directory. When invoked without arguments, each tool prints a brief
     description of the tool and its arguments.
    

    
     Unless stated otherwise, the tools are able to consume any number of archives
     as arguments. By default, they perform their work sequentially. This can be
     changed by the -j<N> argument, where <N> denotes the desired level of
     parallelization. For example, by specifying -j4 to the tool/depot/build
     tool, four concurrent jobs are executed during the creation of binary archives.
    

    
    
    Downloading archives

     
      The depot can be populated with archives in two ways, either by creating
      the content from locally available source codes as explained by Section
      Automated extraction of archives from the source tree, or by downloading
      ready-to-use archives from a web server.
     

     
      In order to download archives originating from a specific user, the depot's
      corresponding user subdirectory must contain two files:
     

     
      	pubkey

      	
       
        contains the public key of the GPG key pair used by the creator
        (aka "user") of the to-be-downloaded archives for signing the archives. The
        file contains the ASCII-armored version of the public key.
       

      

      	download

      	
       
        contains the base URL of the web server where to fetch archives
        from. The web server is expected to mirror the structure of the depot.
        That is, the base URL is followed by a sub directory for the user,
        which contains the archive-type-specific subdirectories.
       

      

     


     
      If both the public key and the download locations are defined, the download
      tool can be used as follows:
     


 ./tool/depot/download genodelabs/src/zlib/2018-01-10


     
      The tool automatically downloads the specified archives and their
      dependencies. For example, as the zlib depends on the libc API, the libc API
      archive is downloaded as well. All archive types are accepted as arguments
      including binary and package archives. Furthermore, it is possible to download
      all binary archives referenced by a package archive. For example, the
      following command downloads the window-manager (wm) package archive, including
      all binary archives, for the 64-bit x86 architecture. Downloaded binary
      archives are always accompanied with their corresponding source and used API
      archives.
     


 ./tool/depot/download genodelabs/pkg/x86_64/wm/2018-02-26


     
      Archive content is not downloaded directly to the depot. Instead, the
      individual archives and signature files are downloaded to a quarantine area in
      the form of a public/ directory located in the root of Genode's source tree.
      As its name suggests, the public/ directory contains data that is imported
      from or to-be exported to the public. The download tool populates it with the
      downloaded archives in their compressed form accompanied with their
      signatures.
     

     
      The compressed archives are not extracted before their signature is checked
      against the public key defined at depot/<user>/pubkey. If however the
      signature is valid, the archive content is imported to the target destination
      within the depot. This procedure ensures that depot content - whenever
      downloaded - is blessed by the cryptographic signature of its creator.
     

    
    
    Building binary archives from source archives

     
      With the depot populated with source and API archives, one can use the
      tool/depot/build tool to produce binary archives. The arguments have the
      form <user>/bin/<arch>/<src-name> where <arch> stands for the targeted
      CPU architecture. For example, the following command builds the zlib
      library for the 64-bit x86 architecture. It executes four concurrent jobs
      during the build process.
     


 ./tool/depot/build genodelabs/bin/x86_64/zlib/2018-01-10 -j4


     
      Note that the command expects a specific version of the source archive as
      argument. The depot may contain several versions. So the user has to decide,
      which one to build.
     

     
      After the tool is finished, the freshly built binary archive can be found in
      the depot within the genodelabs/bin/<arch>/<src>/<version>/ subdirectory.
      Only the final result of the built process is preserved. In the example above,
      that would be the zlib.lib.so library.
     

     
      For debugging purposes, it might be interesting to inspect the intermediate
      state of the build. This is possible by adding KEEP_BUILD_DIR=1 as argument
      to the build command. The binary's intermediate build directory can be
      found besides the binary archive's location named with a .build suffix.
     

     
      By default, the build tool won't attempt to rebuild a binary archive that is
      already present in the depot. However, it is possible to force a rebuild via
      the REBUILD=1 argument.
     

    
    
    Publishing archives

     
      Archives located in the depot can be conveniently made available to the public
      using the tool/depot/publish tool. Given an archive path, the tool takes
      care of determining all archives that are implicitly needed by the specified
      one, wrapping the archive's content into compressed tar archives, and signing
      those.
     

     
      As a precondition, the tool requires you to possess the private key that
      matches the depot/<you>/pubkey file within your depot. The key pair should
      be present in the key ring of your GNU privacy guard.
     

     
      To publish archives, one needs to provide the specific version to publish.
      For example:
     


 ./tool/depot/publish <you>/pkg/x86_64/wm/2018-02-26


     
      The command checks that the specified archive and all dependencies are present
      in the depot. It then proceeds with the archiving and signing operations. For
      the latter, the pass phrase for your private key will be requested. The
      publish tool outputs the information about the processed archives, e.g.:
     


 publish /.../public/<you>/api/base/2018-02-26.tar.xz
 publish /.../public/<you>/api/framebuffer_session/2017-05-31.tar.xz
 publish /.../public/<you>/api/gems/2018-01-28.tar.xz
 publish /.../public/<you>/api/input_session/2018-01-05.tar.xz
 publish /.../public/<you>/api/nitpicker_gfx/2018-01-05.tar.xz
 publish /.../public/<you>/api/nitpicker_session/2018-01-05.tar.xz
 publish /.../public/<you>/api/os/2018-02-13.tar.xz
 publish /.../public/<you>/api/report_session/2018-01-05.tar.xz
 publish /.../public/<you>/api/scout_gfx/2018-01-05.tar.xz
 publish /.../public/<you>/bin/x86_64/decorator/2018-02-26.tar.xz
 publish /.../public/<you>/bin/x86_64/floating_window_layouter/2018-02-26.tar.xz
 publish /.../public/<you>/bin/x86_64/report_rom/2018-02-26.tar.xz
 publish /.../public/<you>/bin/x86_64/wm/2018-02-26.tar.xz
 publish /.../public/<you>/pkg/wm/2018-02-26.tar.xz
 publish /.../public/<you>/raw/wm/2018-02-14.tar.xz
 publish /.../public/<you>/src/decorator/2018-02-26.tar.xz
 publish /.../public/<you>/src/floating_window_layouter/2018-02-26.tar.xz
 publish /.../public/<you>/src/report_rom/2018-02-26.tar.xz
 publish /.../public/<you>/src/wm/2018-02-26.tar.xz


     
      According to the output, the tool populates a directory called public/
      at the root of the Genode source tree with the to-be-published archives.
      The content of the public/ directory is now ready to be copied to a
      web server, e.g., by using rsync.
     

   

   
   
   Automated extraction of archives from the source tree

   
    
     Genode users are expected to populate their local depot with content obtained
     via the tool/depot/download tool. However, Genode developers need a way to
     create depot archives locally in order to make them available to users. Thanks
     to the tool/depot/extract tool, the assembly of archives does not need to be
     a manual process. Instead, archives can be conveniently generated out of the
     source codes present in the Genode source tree and the contrib/ directory.
    

    
     However, the granularity of splitting source code into archives, the
     definition of what a particular API entails, and the relationship between
     archives must be augmented by the archive creator as this kind of information
     is not present in the source tree as is. This is where so-called "archive
     recipes" enter the picture. An archive recipe defines the content of an
     archive. Such recipes can be located at an recipes/ subdirectory of any
     source-code repository, similar to how port descriptions and run scripts
     are organized. Each recipe/ directory contains subdirectories for the
     archive types, which, in turn, contain a directory for each archive. The
     latter is called a recipe directory.
    

    
    
    Recipe directory

     
      The recipe directory is named after the archive omitting the archive version
      and contains at least one file named hash. This file defines the version
      of the archive along with a hash value of the archive's content
      separated by a space character. By tying the version name to a particular hash
      value, the extract tool is able to detect the appropriate points in time
      whenever the version should be increased due to a change of the archive's
      content.
     

    
    
    API, source, and raw-data archive recipes

     
      Recipe directories for API, source, or raw-data archives contain a
      content.mk file that defines the archive's content in the form of make
      rules. The content.mk file is executed from the archive's location within
      the depot. Hence, the contained rules can refer to archive-relative files as
      targets. The first (default) rule of the content.mk file is executed with a
      customized make environment:
     

     
      	GENODE_DIR

      	
       
        A variable that holds the path to the root of the Genode source tree,
       

      

      	REP_DIR

      	
       
        A variable with the path to the source code repository where the recipe
        is located
       

      

      	port_dir

      	
       
        A make function that returns the directory of a port within the
        contrib/ directory. The function expects the location of the
        corresponding port file as argument, for example, the zlib recipe
        residing in the libports/ repository may specify $(REP_DIR)/ports/zlib
        to access the 3rd-party zlib source code.
       

      

     


     
      Source archive recipes contain simplified versions of the used_apis and
      (for libraries) api files as found in the archives. In contrast to the
      depot's counterparts of these files, which contain version-suffixed names,
      the files contained in recipe directories omit the version suffix. This
      is possible because the extract tool always extracts the current version
      of a given archive from the source tree. This current version is already
      defined in the corresponding recipe directory.
     

    
    
    Package-archive recipes

     
      The recipe directory for a package archive contains the verbatim content of
      the to-be-created package archive except for the archives file. All other
      files are copied verbatim to the archive. The content of the recipe's
      archives file may omit the version information from the listed ingredients.
      Furthermore, the user part of each entry can be left blank by using _ as a
      wildcard. When generating the package archive from the recipe, the extract
      tool will replace this wildcard with the user that creates the archive.
     

   

   
   
   Convenience front-end to the extract, build tools

   
    
     For developers, the work flow of interacting with the depot is most often the
     combination of the extract and build tools whereas the latter expects
     concrete version names as arguments. The create tool accelerates this common
     usage pattern by allowing the user to omit the version names. Operations
     implicitly refer to the current version of the archives as defined in
     the recipes.
    

    
     Furthermore, the create tool is able to manage version updates for the
     developer. If invoked with the argument UPDATE_VERSIONS=1, it automatically
     updates hash files of the involved recipes by taking the current date as
     version name. This is a valuable assistance in situations where a commonly
     used API changes. In this case, the versions of the API and all dependent
     archives must be increased, which would be a labour-intensive task otherwise.
     If the depot already contains an archive of the current version, the create
     tools won't re-create the depot archive by default. Local modifications of
     the source code in the repository do not automatically result in a new archive.
     To ensure that the depot archive is current, one can specify FORCE=1 when
     executing the create tool. With this argument, existing depot archives are replaced by
     freshly extracted ones and version updates are detected. When specified for
     binary archives, FORCE=1 normally implies REBUILD=1. To prevent
     the superfluous rebuild of binary archives whose source versions remain
     unchanged, FORCE=1 can be combined with the argument REBUILD=.
    

   

   
   
   Accessing depot content from run scripts

   
    
     The depot tools are not meant to replace the run tool but rather to complement
     it. When both tools are combined, the run tool implicitly refers to "current"
     archive versions as defined for the archive's corresponding recipes. This way,
     the regular run-tool work flow can be maintained while attaining a
     productivity boost by fetching content from the depot instead of building it.
    

    
     Run scripts can use the import_from_depot function to incorporate archive
     content from the depot into a scenario. The function must be called after the
     create_boot_directory function and takes any number of pkg, src, or raw
     archives as arguments. An archive is specified as depot-relative path of the
     form <user>/<type>/name. Run scripts may call import_from_depot
     repeatedly. Each argument can refer to a specific version of an archive or
     just the version-less archive name. In the latter case, the current version
     (as defined by a corresponding archive recipe in the source tree) is used.
    

    
     If a src archive is specified, the run tool integrates the content of
     the corresponding binary archive into the scenario. The binary archives
     are selected according the spec values as defined for the build directory.
    

    
    
    Selectively overriding depot content

     
      While working on a component that is embedded in a complex system scenario,
      the advantages of the run-tool's work flow and the depot can easily be
      combined. The majority of the scenario's content may come from the depot via
      the import_from_depot mechanism. Because fetching content from the depot
      sidesteps the build system for those components, the system integration step
      becomes very quick. It is still possible to override selected components by
      freshly built ones. For example, while working on the graphical terminal
      component, one may combine the following lines in one run script:
     


 create_boot_directory
 ...
 import_from_depot genodelabs/pkg/terminal
 ...
 build { server/terminal }
 build_boot_image { terminal }


     
      Since, the pkg/terminal package is imported from the depot, the scenario
      obtains all ingredients needed to spawn a graphical terminal such as font and
      configuration data. The package also contains the terminal binary. However,
      as we want to use our freshly compiled binary instead, we override the
      terminal with our customized version by specifying the binary name in the
      build_boot_image step.
     

     
      The same approach is convenient for instrumenting low-level parts of the
      framework while debugging a larger scenario. As the low-level parts reside
      within the dynamic linker, we can explicitly build the dynamic linker lib/ld
      and integrate the resulting ld.lib.so binary as boot module:
     


 create_boot_directory
 ...
 import_from_depot genodelabs/src/[base_src]
 ...
 build { lib/ld }
 build_boot_image { ld.lib.so }


   

  
  
  Git flow

   
    The official Genode Git repository is available at the project's GitHub
    site:
   

   
    	GitHub project

    	
     
      https://github.com/genodelabs/genode
     

    

   


   
   
   Master and staging

   
    
     The official Git repository has two branches "master" and "staging".
    

    
    
    Master branch

     
      The master branch is the recommended branch for users of the framework.
      It is known to have passed quality tests. The existing history of this
      branch is fixed and will never change.
     

    
    
    Staging branch

     
      The staging branch contains the commits that are scheduled for inclusion
      into the master branch. However, before changes are merged into the master
      branch, they are subjected to quality-assurance measures conducted by
      Genode Labs. Those measures include the successful building of the framework
      for all base platforms and the passing of automated tests. After changes
      enter the staging branch, those quality-assurance measures are expected to
      fail. If so, the changes are successively refined by a series of fixup
      commits. Each fixup commit should refer to the commit it is refining using a
      commit message as follows:
     


 fixup "<commit message of the refined commit>"


     
      If the fixup is non-trivial, change the "fixup" prefix to "squash" and add
      a more elaborative description to the commit message.
     

     
      Once the staging branch passes the quality-assurance measures, the Genode
      maintainers tidy-up the history of the staging branch by merging all fixup
      commits with their respective original commit. The resulting commits are then
      merged on top of the master branch and the staging branch is reset to the new
      master branch.
     

     
      Note that the staging branch is volatile. In contrast to the master branch,
      its history is not stable. Hence, it should not be used to base developments
      on.
     

    
    
    Release version

     
      The version number of a Genode release refers to the release date. The
      two-digit major number corresponds to the last two digits of the year and
      the two-digit minor number corresponds to the month. For example, "17.02".
     

     
      Each Genode release represents a snapshot of the master branch taken at
      release time. It is complemented by the following commits:
     

     
      	
       
        "Release notes for version <version>" containing the release documentation
        in the form of a text file at doc/release_notes,
       

      

      	
       
        "News item for Genode <version>" containing the release announcement as
        published at the genode.org website,
       

      

      	
       
        "Version: <version>" with the adaptation of the VERSION file.
       

      

     

     
      The latter commit is tagged with the version number. The tag is signed by one
      of the mainline developers.
     

   

   
   
   Development practice

   
    
     Each developer maintains a fork of Genode's Git repository. To facilitate
     close collaboration with the developer community, it is recommended
     to host the fork on GitHub. Open a GitHub account, use GitHub's web
     interface to create a new fork, and follow the steps given by GitHub
     to fetch the cloned repository to your development machine.
    

    
     In the following, we refer to the official Genode repository as
     "genodelabs/genode". To conveniently follow the project's mainline
     development, it is recommended to register the official repository as a
     "remote" in your Git repository:
    


 git remote add genodelabs https://github.com/genodelabs/genode.git


    
     Once, the official repository is known to your clone, you can fetch new
     official revisions via
    


 git fetch genodelabs


    
    
    Topic branches

     
      As a rule of thumb, every line of development has a corresponding
      topic in the issue tracker. This is the place where the developers discuss and
      review
      the ongoing work. Hence, when starting a new line of development, the first
      step should be the creation of a new topic.
     

     
      	Issue tracker

      	
       
        https://github.com/genodelabs/genode/issues
       

      

     


     
      The new topic should be accompanied with a short description about the
      motivation behind the line of work and the taken approach.
      The second step is the creation of a dedicated topic branch in the developer's
      fork of Genode's Git repository.
     


 git checkout -b issue<number> genodelabs/master


     
      The new topic branch should be based on the
      most current genodelabs/master branch. This eases the later integration of
      the topic branch into the mainline development.
     

     
      While working on a topic branch, it is recommended to commit many small
      intermediate steps. This is useful to keep track of the line of thoughts
      during development. This history is regarded as volatile. That is, it is not
      set in stone. Hence, you as developer do not have to spend too much thoughts
      on the commits during the actual development.
     

     
      Once the work on the topic is completed and the topic branch is going to get
      integrated into the mainline development, the developer curates the
      topic-branch history so that a short and well-arranged sequence of commits
      remains. This step is usually performed by interactively editing the
      topic-branch history via the gitrebase-i command.
      In many cases,
      the entire topic branch can be squashed into a single commit. The goal behind
      this curating step is to let the mainline history document the progress at a
      level of detail that is meaningful for the users of the framework. The
      mainline history should satisfy the following:
     

     
      	
       
        The relationship of a commit with an issue at the issue tracker should be
        visible. For this reason, GitHub's annotations "Issue #n" and
        "Fixed #n" are added to the commit messages.
       

      

      	
       
        Revisiting the history between Genode releases should clearly reveal the
        changes that potentially interest the users. I.e., when writing the
        quarterly release notes, the Genode developers go through the history and
        base the release-notes documentation on
        the information contained in the commit messages. This works best if each
        topic is comprised by a few commits with meaningful descriptions. This
        becomes hard if the history contains too many details.
       

      

      	
       
        Each commit should represent a kind of "transaction" that can be reviewed
        independently without knowing too much context. This is hardly possible if
        intermediate steps that subsequently touch the same code are present as
        individual commits.
       

      

      	
       
        It should be easy to selectively revert individual topics/features using git
        revert (e.g., when trouble-shooting). This is simple when each topic is
        represented by one or just a few commits.
       

      

     

    
    
    Coding conventions

     
      Genode's source code follows time-tested conventions regarding the
      coding style and code pattern, which are important to follow. The coding style
      is described in the following document:
     

     
      	Coding-style Guidelines

      	
       
        http://genode.org/documentation/developer-resources/coding_style
       

      

     


    
    
    Writing a commit message

     
      Commit messages should adhere the following convention.
      The first line summarizes the commit using not more than 50 characters.
      This line will be displayed by various tools. So it should express the basic
      topic and eventually refer to an issue. For example:
     


 Add sanity checks in tool/tool_chain, fix #62


     
      If the patch refers to an existing issue, add a reference to the
      corresponding issue. If not, please consider opening an issue first. In the
      case the patch is supposed to close an existing issue, add this information
      using GitHub's conventions, e.g., by stating "Fix #45" in your commit
      message, the issue will be closed automatically, by stating "Issue #45", the
      commit will be displayed in the stream of discussion of the corresponding
      issue.
     

     
      After a blank line, a description of the patch follows. The description should
      consider the following questions:
     

     
      	
       
        Why is the patch needed?
       

      

      	
       
        How does the patch achieve the goal?
       

      

      	
       
        What are known consequences of this patch? Will it break API compatibility,
        or produce a follow-up issue?
       

      

     

     
      Reconsider the documentation related to your patch: If the commit message
      contains important information not present in the source code, this
      information should better be placed into the code or the accompanied
      documentation (e.g., in the form of a README file).
     

   



Genode OS Framework Foundations

 
 
 System configuration

  
   There are manifold principal approaches to configure different aspects of
   an operating system and the applications running on top.
   At the lowest level, there exists the opportunity to pass configuration
   information to the boot loader. This information may be evaluated
   directly by the boot loader or passed to the booted system. As an
   example for the former, some boot loaders allow for setting up a
   graphics mode depending on its configuration. Hence, the graphics mode
   to be used by the OS could be defined right at this early stage
   of booting. More prominently, however, is the mere passing of configuration
   information to the booted OS, e.g., in the form of a kernel command line or as
   command-line arguments to boot modules. The OS interprets
   boot-loader-provided data structures (i.e., multiboot info structures) to
   obtain such information. Most kernels interpret certain configuration
   arguments passed via this mechanism.
   At the OS-initialization level, before any drivers are functioning,
   the OS behavior is typically governed by configuration information
   provided along with the kernel image, i.e., an initial file-system
   image (initrd). On Linux-based systems, this information comes in the
   form of configuration files and init scripts located at well-known
   locations within the initial file-system image.
   Higher up the software stack, configuration becomes an even more diverse
   topic. I.e., the runtime behavior of a GNU/Linux-based system is
   defined by a conglomerate of configuration files, daemons and their
   respective command-line arguments, environment variables, collections
   of symlinks, and plenty of heuristics.
  

  
   The diversity and complexity of configuration mechanisms, however, is
   problematic for high-assurance computing. To attain a high level of
   assurance, Genode's architecture must be complemented by a low-complexity
   yet scalable configuration concept.
   The design of this concept takes the following considerations into account:
  

  
   	Uniformity across platforms

   	
    
     To be applicable across a variety of kernels and hardware platforms, the
     configuration mechanism must not rely on a particular kernel or boot loader.
     Even though boot loaders for x86-based machines usually support the
     multiboot specification and thereby the ability to supplement boot modules
     with additional command lines, boot loaders on ARM-based platforms
     generally lack this ability. Furthermore, even if a multiboot compliant
     boot loader is used, the kernel - once started - must provide a way to
     reflect the boot information to the system on top, which is not the case
     for most microkernels.
    

   

   	Low complexity

   	
    
     The configuration mechanism is an intrinsic part of each component. Hence,
     it affects the trusted computing base of every Genode-based system.
     For this reason, the mechanism must be easy to understand and implementable
     without the need for complex underlying OS infrastructure. As a negative
     example, the provision of configuration files via a file system would
     require each Genode-based system to support the notion of a file system
     and to define the naming of configuration files.
    

   

   	Expressiveness

   	
    
     Passing configuration information as command-line arguments to components
     at their creation time seems like a natural way to avoid the complexity
     of a file-based configuration mechanism.
     However, whereas command-line arguments are the tried and tested way for
     supplying program arguments in a concise way, the expressiveness
     of the approach is limited. In particular, it is ill-suited for expressing
     structured information as often found in configurations.
     Being a component-based system, Genode requires a way to
     express relationships between components, which lends itself to the
     use of a structural representation.
    

   

   	Common syntax

   	
    
     The requirement of a low-complexity mechanism mandates a common syntax
     across components. Otherwise, each component would need to  come with a
     custom parser. Each of those parsers would eventually inflate the
     complexity of the trusted computing base. In contrast, a common syntax
     that is both expressive and simple to parse helps to avoid such
     redundancies by using a single parser implementation across all components.
    

   

   	Least privilege

   	
    
     Being the guiding motive behind Genode's architecture, the principle of
     least privilege needs to be applied to the access of configuration
     information. Each component needs to be able to access its own configuration
     but must not observe configuration information concerning unrelated components.
     A system-global registry of configurations or even a global namespace of
     keys for such a database would violate this principle.
    

   

   	Accommodation of dynamic workloads

   	
    
     Supplying configuration information at the construction time of a component
     is not sufficient for long-living components, whose behavior might need to
     be adapted at runtime.
     For example, the assignment of resources to the clients of a resource
     multiplexer might change over the lifetime of the resource multiplexer.
     Hence, the configuration concept should provide a means to update
     the configuration information of a component after it has been constructed.
    

   

  


  
  
  Nested configuration concept

   
    Genode's configuration concept is based on the ROM session interface described
    in Section Read-only memory (ROM). In contrast to a file-system interface,
    the ROM session interface is extremely simple. The client of a ROM service
    specifies the requested ROM module by its name as known by the client.
    There is neither a way to query a list of available ROM modules, nor are ROM
    modules organized in a hierarchic name space.
   

   	
     
     [image: img/nested_config]
   
	
      Nested system configuration

   


   
    The ROM session interface is implemented by core's ROM service to make boot
    modules available to other components. Those boot modules comprise the
    executable binaries of the init component as well as those of the components
    created by init. Furthermore, a ROM module called "config" contains the
    configuration of the init process in XML format. To obtain its
    configuration, init requests a ROM session for the ROM module "config" from
    its parent, which is core. Figure img/nested_config shows an example of
    such a config ROM module.
   

   	
     
     [image: img/config_virtualization]
   
	
      Successive interception of "config" ROM requests

   


   
    The config ROM module uses XML as syntax, which supports the expression of
    arbitrary structural data while being simple to parse. I.e., Genode's XML
    parser comes in the form of a single header file with less than 400 lines of
    code. Init's configuration is contained within a single <config> node.
   

   
    Each component started by init obtains its configuration by requesting
    a ROM module named "config" from its parent. Init responds to
    this request by handing out a locally-provided ROM session. Instead of
    handing out the "config" ROM module as obtained from core, it creates a new
    dataspace that solely contains the portion of init's config ROM module that
    refers to the respective child. Analogously to init's configuration,
    each child's configuration has the form of a single <config> node.
    This works recursively. From each component's perspective, including the init
    component, the mechanism for obtaining its configuration is identical  it
    obtains a ROM session for a ROM module named "config" from its parent.
    The parent interposes the ROM session request as described in
    Section Interposing individual services. Figure img/config_virtualization
    shows the successive interposing of "config" ROM requests according to the
    example configuration given in Figure img/nested_config.
    At each level, the information structure within the <config> node can
    be different. Besides following the convention that a configuration has the
    form of a single <config> node, each component can introduce arbitrary
    custom tags and attributes.
   

   
    Besides being simple, the use of the ROM session interface for supplying
    configuration information has the benefit of supporting dynamic configuration
    updates over the lifetime of the config ROM session. Section
    Read-only memory (ROM) describes the update protocol between client
    and server of a ROM session. This way, the configuration of long-living
    components can be dynamically changed.
   

  
  
  The init component

   
    The init component plays a special role within Genode's component tree. It
    gets started directly by core, gets assigned all physical resources, and
    controls the execution of all subsequent component nodes, which can be further
    instances of init. Init's policy is driven by an XML-based configuration,
    which declares a number of children, their relationships, and resource
    assignments.
   

   
   
   Session routing

   
    
     At the parent-child interface, there are two operations that are subject to
     policy decisions of the parent: the child announcing a service and the
     child requesting a service. If a child announces a service, it is up to the parent
     to decide if and how to make this service accessible to its other children.
     When a child requests a service, the parent may deny the session request,
     delegate the request to its own parent, implement the requested service
     locally, or open a session at one of its other children. This decision may
     depend on the service requested or the session-construction arguments provided
     by the child. Apart from assigning resources to children, the central
     element of the policy implemented in the parent is a set of rules to
     route session requests. Therefore, init's configuration concept is laid out
     around child components and the routing of session requests originating from
     those components. The mechanism is best illustrated by an example:
    


 <config>
   <parent-provides>
     <service name="PD"/>
     <service name="ROM"/>
     <service name="CPU"/>
     <service name="LOG"/>
   </parent-provides>
   <start name="timer" caps="100">
     <resource name="RAM" quantum="1M"/>
     <provides> <service name="Timer"/> </provides>
     <route>
       <service name="PD">  <parent/> </service>
       <service name="ROM"> <parent/> </service>
       <service name="CPU"> <parent/> </service>
       <service name="LOG"> <parent/> </service>
     </route>
   </start>
   <start name="test-timer" caps="200">
     <resource name="RAM" quantum="1M"/>
     <route>
       <service name="Timer">  <child name="timer"/> </service>
       <service name="PD">     <parent/>             </service>
       <service name="ROM">    <parent/>             </service>
       <service name="CPU">    <parent/>             </service>
       <service name="LOG">    <parent/>             </service>
     </route>
   </start>
 </config>


    
     First, there is the declaration of services provided by the parent of the
     configured init instance. In this case, we declare that the parent provides a
     a LOG service.
     For each child to start, there is a <start> node describing the assigned RAM
     and capability budget, declaring services provided by the child,
     and holding a routing table for session requests originating from the child.
     The first child is called "timer" and implements the "Timer" service.
     The second component called "test-timer" is a client of the timer service. In
     its routing table, we see that requests for "Timer" sessions are routed to the
     "timer" child whereas requests for core's services are routed to
     init's parent. Per-child service routing rules provide a flexible way to
     express arbitrary client-server relationships. For example, service requests
     may be transparently mediated through special policy components acting upon
     session-construction arguments. There might be multiple children implementing
     the same service, each targeted by different routing tables. If there exists no
     valid route to a requested service, the service is denied. In the example
     above, the routing tables act effectively as a white list of services the child
     is allowed to use.
    

    
    
    Routing based on session labels

     
      Access-control policies in Genode systems are based on session labels. When a
      server receives a new session request, the session label is passed along with
      the request.
     

     
      A session label is a string that is assembled by the components that are
      involved with routing the session request from the client along the branches
      of the component tree to the server. The client may specify the least
      significant part of the label by itself. This part gives the parent a hint
      for routing the request. For example, a client may create two file-system
      sessions, one labeled with "home" and one labeled with "bin". The parent may
      take this information into account and route the individual requests to
      different file-system servers. The label is successively superseded (prefixed)
      by additional parts along the chain of components on the route of the session
      request. The first part of the label is the most significant part as it is
      imposed by the component in the intermediate proximity of the server. The last
      part is the least trusted part of the label because it originated from the
      client. Once the session request arrives at the server, the server takes the
      session label as the key to select a server-side policy as described in
      Section Server-side policy selection.
     

     
      In most cases, routing decisions are simply based on the type of the requested
      sessions. However, by equipping <service> nodes with the following
      attributes, it is possible to take session labels as a criterion for the
      routing of session requests into account.
     

     
      	label="<string>"

      	
       
        The session label must perfectly match the specified
        string.
       

      

      	label_prefix="<string>"

      	
       
        The first part of the label must match the
        specified string.
       

      

      	label_suffix="<string>"

      	
       
        The end of the label must match the
        specified string.
       

      

      	unscoped_label="<string>"

      	
       
        The session label including the child's name
        prefix must perfectly match the specified string. In contrast to the
        label attribute, which refers to the child-defined label, the unscoped_label
        can refer to the child's environment sessions, which have no client-defined
        label because they are initiated by init itself.
       

      

      	label_last="<string>"

      	
       
        The part after the last "->" delimiter must match the
        specified string. This part usually refers to a requested resource such as
        the name of a ROM module. If no delimiter is present, the label must be an
        exact match.
       

      

     


     
      If no attributes are present, the route matches. The attributes can be
      combined. If any of the specified attributes mismatch, the route is
      neglected.
      If multiple <service> nodes match in init's routing configuration, the first
      matching rule is taken. So the order of the nodes is important.
     

    
    
    Wildcards

     
      In practice, usage scenarios become more complex than the basic example,
      increasing the size of routing tables. Furthermore, in many practical cases,
      multiple children may use the same set of services and require duplicated
      routing tables within the configuration. In particular during development, the
      elaborative specification of routing tables tend to become an inconvenience.
      To alleviate this problem, there are two mechanisms, namely wildcards and a
      default route.
      Instead of specifying a list of individual service routes targeting the same
      destination, the wildcard <any-service> becomes handy. For example, instead
      of specifying
     


 <route>
   <service name="ROM"> <parent/> </service>
   <service name="LOG"> <parent/> </service>
   <service name="PD">  <parent/> </service>
   <service name="CPU"> <parent/> </service>
 </route>


     
      the following shortform can be used:
     


 <route>
   <any-service> <parent/> </any-service>
 </route>


     
      The latter version is not as strict as the first one because it permits the
      child to create sessions at the parent, which were not white listed in the
      elaborative version. Therefore, the use of wildcards is discouraged for
      configuring untrusted components. Wildcards and explicit routes may be combined
      as illustrated by the following example:
     


 <route>
   <service name="LOG"> <child name="nitlog"/> </service>
   <any-service>        <parent/>              </any-service>
 </route>


     
      The routing table is processed starting with the first entry. If the route
      matches the service request, it is taken, otherwise the remaining
      routing-table entries are visited. This way, the explicit service route of
      "LOG" sessions to the "nitlog" child shadows the LOG service provided by the
      parent.
     

     
      To allow a child to use services provided by arbitrary other children, there
      is a further wildcard called <any-child>. Using this wildcard, such a policy
      can be expressed as follows:
     


 <route>
   <any-service> <parent/>    </any-service>
   <any-service> <any-child/> </any-service>
 </route>


     
      This rule would delegate all session requests referring to one of the parent's
      services to the parent. If no parent service matches the session request, the
      request is routed to any child providing the service. The rule can be further
      abbreviated to:
     


 <route>
   <any-service> <parent/> <any-child/> </any-service>
 </route>


     
      Init detects potential ambiguities caused by multiple children providing the
      same service. In this case, the ambiguity must be resolved using an explicit
      route preceding the wildcards.
     

    
    
    Default routing

     
      To reduce the need to specify the same routing table for many children
      in one configuration, there is a <default-route> mechanism. The default
      route is declared within the <config> node and used for each <start>
      entry with no <route> node. In particular during development, the default
      route becomes handy to keep the configuration tidy and neat.
     

     
      The combination of explicit routes and wildcards is designed to scale well from
      being convenient to use during development towards being highly secure at
      deployment time. If only explicit rules are present in the configuration, the
      permitted relationships between all processes are explicitly defined and can be
      easily verified.
     

   

   
   
   Resource assignment

   
    
    
    Physical memory budget

     
      Each <start> node must be equipped with a declaration of the amount of
      RAM assigned to the child via a <resource> sub node.
     


 <resource name="RAM" quantum="1M"/>


     
      If the specified amount exceeds the available resources,
      the available resources are assigned almost completely to the child.
      This makes it possible to assign all remaining resources to the last child by
      simply specifying an overly large quantum.
      In this case, init retains only a small amount of quota for itself, which is used to cover
      indirect costs such as a few capabilities created on behalf of the children,
      or memory used for buffering configuration data. The preserved amount
      can be configured as follows:
     


 <config>
   ...
   <resource name="RAM" preserve="1M"/>
   ...
 </config>


     
      If not specified, init has a reasonable default of 160K (on 32 bit) and
      320K (on 64 bit).
     

    
    
    Capability budget

     
      Each component requires a certain amount of capabilities to live. At startup,
      several capabilities are created along with the component's environment
      sessions, in particular its PD session. At lifetime, the component consumes
      capabilities when creating signal handlers or RPC objects. Since the
      system-global amount of capabilities is a bounded resource, which depends on
      the used kernel and the kernel configuration, Genode subjects the allocation
      of capabilities to the same rigid regime as for physical memory. First, the
      creation of capabilities is restricted by resource quotas explicitly assigned
      to components. Second, capability budgets can be traded between clients and
      servers such that servers are able to account capability allocations to their
      clients.
     

     
      Each <start> node can be equipped with a caps attribute with
      the amount of capabilities assigned to the component. As a rule of
      thumb, the setup costs of a component are 35 capabilities. Hence, for
      typical components, an amount of 100 is a practical value.
      To alleviate the need to equip each <start> node with the same default
      value, the init configuration accepts a default declaration as follows:
     


 <default caps="100"/>


     
      Unless a <start> node is equipped with a custom caps attribute, the
      default value is used.
     

     
      If a component runs out of capabilities, core's PD service prints a warning to
      the log. To observe the consumption of capabilities per component in detail,
      core's PD service is equipped with a diagnostic mode, which can be enabled via
      the diag attribute in the target node of init's routing rules. E.g., the
      following route enables the diagnostic mode for the PD session:
     


 <route>
   <service name="PD"> <parent diag="yes"/> </service>
   ...
 </route>


     
      With the diag attribute enabled, core prints a log message each time the
      PD consumes, frees, or transfers its capability budget.
     

   

   
   
   Multiple instantiation of a single ELF binary

   
    
     Each <start> node requires a unique name attribute. By default, the
     value of this attribute is used as ROM module name for obtaining the ELF
     binary from the parent. If multiple instances of a component with the same
     ELF binary are needed, the binary name can be explicitly specified
     using a <binary> sub node of the <start> node:
    


 <binary name="filename"/>


    
     This way, a unique child name can be defined independently from the
     binary name.
    

   

   
   
   Session-label rewriting

   
    
     As explained in section Session routing, init routes session requests by
     taking the requested service type and the
     session label into account. The latter may be used by the server as a key for
     selecting a policy at the server side. To simplify server-side policies, init
     supports the rewriting of session labels in the target node
     of a matching session route. For example, a interactive shell ("noux") may
     have the following session route for the "home" file system:
    


<route>
  <service name="File_system" label="home">
    <child name="vfs"/>
  </service>
  ...
</route>


    
     At the "vfs" file-system server, the label of the file-system session will
     appear as "noux -> home". This information may be evaluated by the vfs's
     server-side policy. However, when renaming the noux instance, we'd need to
     update this server-side policy.
    

    
     With the label-rewriting mechanism, the client's identity can be hidden from
     the server. The label can instead represent the role of the client, or a name
     of a physical resource. For example, the route could be changed to this:
    


<route>
  <service name="File_system" label="home">
    <child name="vfs" label="primary_user"/>
  </service>
  ...
</route>


    
     When the vfs receives the session request, it is presented with the label
     "primary_user". The fact that the client is "noux" is not taken into account
     for the server-side policy selection.
    

   

   
   
   Nested configuration

   
    
     Each <start> node can host a <config> sub node.
     As described in Section Nested configuration concept, the content of this
     sub node is provided to the child when a ROM session for the module name
     "config" is requested.
     Thereby, arbitrary configuration parameters can be passed to the
     child. For example, the following configuration starts the timer-test within an
     init instance within another init instance. To show the flexibility of init's
     service routing facility, the "Timer" session of the second-level timer-test
     child is routed to the timer service started at the first-level init instance.
    


 <config>
   <parent-provides>
     <service name="LOG"/>
     <service name="ROM"/>
     <service name="CPU"/>
     <service name="PD"/>
   </parent-provides>
   <start name="timer" caps="100">
     <resource name="RAM" quantum="1M"/>
     <provides><service name="Timer"/></provides>
     <route>
       <any-service> <parent/> </any-service>
     </route>
   </start>
   <start name="init" caps="1000">
     <resource name="RAM" quantum="10M"/>
     <config>
       <parent-provides>
         <service name="Timer"/>
         <service name="LOG"/>
         <service name="ROM"/>
         <service name="CPU"/>
         <service name="PD"/>
       </parent-provides>
       <start name="test-timer" caps="200">
         <resource name="RAM" quantum="1M"/>
         <route>
           <any-service> <parent/> </any-service>
         </route>
       </start>
     </config>
     <route>
       <service name="Timer"> <child name="timer"/> </service>
       <any-service>          <parent/>             </any-service>
     </route>
   </start>
 </config>


    
     The services ROM, LOG, CPU, and PD are required by the second-level
     init instance to create the timer-test component.
     As illustrated by this example, the use of nested configurations
     enables the construction of arbitrarily complex component trees via a single
     configuration.
    

   

   
   
   Configuring components from distinct ROM modules

   
    
     As an alternative to specifying the component configurations of all <start>
     nodes via <config> sub nodes, component configurations may be placed in
     separate ROM modules by facilitating the session-label rewriting mechanism
     described in Section Session-label rewriting:
    


 <start name="nitpicker">
   <resource name="RAM" quantum="1M"/>
   <route>
     <service name="ROM" label="config">
       <parent label="nitpicker.config"/>
     </service>
     ...
   </route>
   ...
 </start>


    
     With this routing rule in place, a ROM session request for the module "config"
     is routed to the parent and appears at the parent's ROM service under the
     label "nitpicker.config".
    

   

   
   
   Assigning subsystems to CPUs

   
    
     Most multi-processor (MP) systems have topologies that can be represented on a
     two-dimensional coordinate system. CPU nodes
     close to each other are expected to have closer relationship than distant
     nodes. In a large MP system, it is natural to assign clusters of closely
     related nodes to a given workload. As described in Section
     Recursive system structure, Genode's architecture is based on a strictly
     hierarchic organizational structure. Thereby, it lends itself to the idea of
     applying this successive virtualization of resources to the problem of clustering
     CPU nodes.
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       Successive virtualization of CPU affinity spaces by nested instances of init

    


    
     Each component within the component tree has a component-local view on a
     so-called affinity space, which is a two-dimensional coordinate space. If the
     component creates a new subsystem, it can assign a portion of its own affinity
     space to the new subsystem by imposing a rectangular affinity location to the
     subsystem's CPU session. Figure img/affinity_spaces illustrates the idea.
    

    
     Following from the expression of affinities as a rectangular location within a
     component-local affinity space, the assignment of subsystems to CPU nodes
     consists of two parts: the definition of the affinity space dimensions as used
     for the init instance, and the association of subsystems with affinity locations
     relative to the affinity space.
     The affinity space is configured as a sub node of the <config> node. For
     example, the following declaration describes an affinity space of 4x2:
    


 <config>
   ...
   <affinity-space width="4" height="2" />
   ...
 </config>


    
     Subsystems can be constrained to parts of the affinity space using the
     <affinity> sub node of a <start> entry:
    


 <config>
   ...
   <start name="loader">
     <affinity xpos="0" ypos="1" width="2" height="1" />
     ...
   </start>
   ...
 </config>


    
     As illustrated by this example, the numbers used in the declarations for this
     instance of init are not directly related to physical CPUs.
     If the machine has merely two cores, init's affinity space would be mapped to
     the range 0,1 of physical CPUs. However, in a machine with 16x16 CPUs, the
     loader would obtain 8x8 CPUs with the upper-left CPU at position (4,0).
    

   

   
   
   Priority support

   
    
     The number of CPU priorities to be distinguished by init can be specified with
     the prio_levels attribute of the <config> node. The value must be a power of
     two. By default, no priorities are used. To assign a priority to a child
     process, a priority value can be specified as priority attribute of the
     corresponding <start> node. Valid priority values lie in the range of
    

    
     -prio_levels + 1 (maximum priority degradation) to 0 (no priority degradation).
    

   

   
   
   Propagation of exit events

   
    
     A component can notify its parent about its graceful exit via the exit RPC
     function of the parent interface. By default, init responds to such a
     notification from one of its children by merely printing a log message but
     ignores it otherwise. However, there are scenarios where the exit of a
     particular child should result in the exit of the entire init component. To
     propagate the exit of a child to the parent of init, start nodes can host the
     optional sub node <exit> with the attribute propagate set to "yes".
    


 <config>
   <start name="noux">
     <exit propagate="yes"/>
     ...
   </start>
 </config>


    
     The exit value specified by the exiting child is forwarded to init's parent.
    

   

   
   
   State reporting

   
    
     When used in a nested fashion, init can be configured to report its internal
     state in the form of a "state" report by placing a <report> node into init's
     configuration. The report node accepts the following arguments (with their
     default values shown):
    

    
     	delay_ms="100"

     	
      
       specifies the number of milliseconds to wait before
       producing a new report. This way, many consecutive state changes -
       like they occur during startup - do not result in an overly
       large number of reports but are merged into one final report.
      

     

     	buffer="4K"

     	
      
       the maximum size of the report in bytes. The attribute
       accepts the use of K/M/G as units.
      

     

     	init_ram="no"

     	
      
       if enabled, the report will contain a <ram> node
       with the memory statistics of init.
      

     

     	init_caps="no"

     	
      
       if enabled, the report will contain a <caps> node
       with the capability-allocation statistics of init.
      

     

     	ids="no"

     	
      
       supplement the children in the report with unique IDs, which
       may be used to infer the lifetime of children across configuration
       updates in the future.
      

     

     	requested="no"

     	
      
       if enabled, the report will contain information about
       all session requests initiated by the children.
      

     

     	provided="no"

     	
      
       if enabled, the report will contain information about
       all sessions provided by all servers.
      

     

     	session_args="no"

     	
      
       level of detail of the session information
       generated via requested or provided.
      

     

     	child_ram="no"

     	
      
       if enabled, the report will contain a <ram> node
       for each child based on the information obtained from the child's PD
       session.
      

     

     	child_caps="no"

     	
      
       if enabled, the report will contain a <caps> node
       for each child based on the information obtained from the child's PD
       session.
      

     

    


    
     Note that the state reporting feature cannot be used for the initial
     instance of init started by core. It depends on the "Timer" and "Report"
     services, which are provided by higher-level components only.
    

   

   
   
   Init verbosity

   
    
     To ease debugging, init can be instructed to print diverse status
     information as LOG output. To enable the verbose mode, assign the value "yes"
     to the verbose attribute of the <config> node.
    

   

   
   
   Service forwarding

   
    
     In nested scenarios, init is able to act as a server that forwards
     session requests to its children. Session requests can be routed
     depending on the requested service type and the session label
     originating from init's parent.
    

    
     The feature is configured by one or multiple <service> nodes hosted in
     init's <config> node. The routing policy is selected via the regular
     server-side policy-selection mechanism, for example:
    


 <config>
   ...
   <service name="LOG">
     <policy label="noux">
       <child name="terminal_log" label="important"/>
     </policy>
     <default-policy> <child name="nitlog"/> </default-policy>
   </service>
   ...
 </config>


    
     Each policy node must have a <child> sub node, which denotes the name of the
     server with the name attribute. The optional label attribute defines
     the session label presented to the server, analogous to how the
     rewriting of session labels works in session routes. If not specified,
     the client-provided label is presented to the server as is.
    

   



Genode OS Framework Foundations

 
 
 Under the hood

  
   This chapter gives insight into the inner workings of the Genode OS
   framework. In particular, it explains how the concepts explained in Chapter
   Architecture are realized on different kernels and hardware platforms.
  

  
  
  Component-local startup code and linker scripts

   
    All Genode components including core rely on the same startup code, which
    is roughly outlined at the end of Section Component creation. This
    section revisits the required steps in more detail and refers to the corresponding
    points in the source code. Furthermore, it provides background information
    about the linkage of components, which is closely related to the startup
    code.
   

   
   
   Linker scripts

   
    
     Under the hood, the Genode build system uses three different linker scripts
     located at _repos/base/src/ld/_:
    

    
     	genode.ld

     	
      
       is used for statically linked components, including core,
      

     

     	genode_dyn.ld

     	
      
       is used for dynamically linked components, i.e., components
       that are linked against at least one shared library,
      

     

     	genode_rel.ld

     	
      
       is used for shared libraries.
      

     

    


    
     Additionally, there exists a special linker script for the dynamic linker
     (Section Dynamic linker).
    

    
     Each program image generated by the linker generally consists of three parts,
     which appear consecutively in the component's virtual memory.
    

    
     	
      
       A read-only "text" part contains sections for code, read-only
       data, and the list of global constructors and destructors.
      

      
       The startup code is placed in a dedicated section .text.crt0, which
       appears right at the start of the segment. Thereby the link address of
       the component is known to correspond to the ELF entrypoint (the first
       instruction of the assembly startup code).
       This is useful when converting the ELF image of the base-hw version of
       core into a raw binary. Such a raw binary can be loaded directly into
       the memory of the target platform without the need for an ELF loader.
      

      
       The mechanisms for generating the list of constructors and destructors
       differ between CPU architecture and are defined by the architecture's
       ABI. On x86, the lists are represented by .ctors.* and .dtors.*.
       On ARM, the information about global constructors is represented by
       .init_array and there is no visible information about global destructors.
      

     

     	
      
       A read-writable "data" part that is pre-populated with data.
      

     

     	
      
       A read-writable "bss" part that is not physically present in the binary but
       known to be zero-initialized when the ELF image is loaded.
      

     

    

    
     The link address is not defined in the linker script but specified as
     linker argument. The default link address is specified in a platform-specific
     spec file, e.g., repos/base-nova/mk/spec/nova.mk for the NOVA platform.
     Components that need to organize their virtual address space in a special
     way (e.g., a virtual machine monitor that co-locates the guest-physical
     address space with its virtual address space) may specify link addresses
     that differ from the default one by overriding the LD_TEXT_ADDR value.
    

    
    
    ELF entry point

     
      As defined at the start of the linker script via the ENTRY directive, the
      ELF entrypoint is the function _start. This function is located at the very
      beginning of the .text.crt0 section. See the Section Startup code for
      more details.
     

    
    
    Symbols defined by the linker script

     
      The following symbols are defined by the linker script and used by the
      base framework.
     

     
      	_prog_img_beg,_prog_img_data,_prog_img_end

      	
       
        Those symbols mark the start of the "text" part, the start of the "data"
        part (the end of the "text" part), and the end of the "bss" part.
        They are used by core to exclude those virtual memory ranges from
        the core's virtual-memory allocator (core-region allocator).
       

      

      	_parent_cap,_parent_cap_thread_id,_parent_cap_local_name

      	
       
        Those symbols are located at the beginning of the "data" part.
        During the ELF loading of a new component, the parent writes
        information about the parent capability to this location (the start
        of the first read-writable ELF segment). See the corresponding code
        in the Loaded_executable constructor in base/src/lib/base/child_process.cc.
        The use of the information depends on the base platform. E.g.,
        on a platform where a capability is represented by a tuple of a global
        thread ID and an object ID such as OKL4 and L4ka::Pistachio, the
        information is taken as verbatim values. On platforms that fully
        support capability-based security without the use of any form of
        a global name to represent a capability, the information remains unused.
        Here, the parent capability is represented by the same known
        local name in all components.
       

      

     


     
      Even though the linker scripts are used across all base platforms, they
      contain a few platform-specific supplements that are needed to support
      the respective kernel ABIs. For example, the definition of the symbol
      __l4sys_invoke_indirect is needed only on the Fiasco.OC platform and
      is unused on the other base platforms. Please refer to the comments
      in the linker script for further explanations.
     

   

   
   
   Startup code

   
    
     The execution of the initial thread of a new component starts at the ELF
     entry point, which corresponds to the _start function. This is an
     assembly function defined in repos/base/src/lib/startup/spec/<arch>/crt0.s
     where <arch> is the CPU architecture (x86_32, x86_64, or ARM).
    

    
    
    Assembly startup code

     
      The assembly startup code is position-independent code (PIC).
      Because the Genode base libraries are linked against both statically-linked
      and dynamically linked executables, they have to be compiled as PIC code.
      To be consistent with the base libraries, the startup code needs to be
      position-independent, too.
     

     
      The code performs the following steps:
     

     
      	
       
        Saving the initial state of certain CPU registers. Depending on the
        used kernel, these registers carry information from the
        kernel to the core component. More details about this information
        are provided by Section Bootstrapping and allocator setup. The
        initial register values are saved in global variables named
        _initial_<register>. The global variables are located in the BSS
        segment. Note that those variables are used solely by core.
       

      

      	
       
        Setting up the initial stack. Before the assembly code can call any
        higher-level C function, the stack pointer must be initialized to
        point to the top of a valid stack. The initial stack is located in the
        BSS section and referred to by the symbol _stack_high. However,
        having a stack located within the BSS section is dangerous. If it
        overflows (e.g., by declaring large local variables, or by recursive
        function calls), the stack would silently overwrite parts of the
        BSS and DATA sections located below the lower stack boundary. For prior
        known code, the stack can be dimensioned to a reasonable size. But
        for arbitrary application code, no assumption about
        the stack usage can be made. For this reason, the initial stack cannot
        be used for the entire lifetime of the component. Before any
        component-specific code is called, the stack needs to be relocated to
        another area of the virtual address space where the lower bound of the
        stack is guarded by empty pages. When using such a "real" stack, a
        stack overflow will produce a page fault, which can be handled or at least
        immediately detected. The initial stack is solely used to perform the
        steps required to set up the real stack. Because those steps are the same for
        all components, the usage of the initial stack is bounded.
       

      

      	
       
        Because the startup code is used by statically linked components as well as
        the dynamic linker, the startup immediately calls the init_rtld hook
        function.
        For regular components, the function does not do anything. The default
        implementation in init_main_thread.cc at  repos/base/src/lib/startup/ is a weak
        function. The dynamic linker provides a non-weak implementation, which
        allows the linker to perform initial relocations of itself very early at
        the dynamic linker's startup.
       

      

      	
       
        By calling the init_main_thread function defined in
        repos/base/src/lib/startup/init_main_thread.cc, the assembly code triggers
        the execution of all the steps needed for the creation of the real stack.
        The function is implemented in C++, uses the initial stack, and returns
        the address of the real stack.
       

      

      	
       
        With the new stack pointer returned by init_main_thread, the assembly
        startup code is able to switch the stack pointer from the initial stack to
        the real stack. From this point on, stack overflows cannot easily corrupt
        any data.
       

      

      	
       
        With the real stack in place, the assembly code finally passes the control
        over to the C++ startup code provided by the _main function.
       

      

     

    
    
    Initialization of the real stack along with the Genode environment

     
      As mentioned above, the assembly code calls the init_main_thread function
      (located in repos/base/src/lib/startup/init_main_thread.cc) for setting up the
      real stack for the program. For placing a stack in a dedicated portion of the
      component's virtual address space, the function needs to overcome two
      principle problems:
     

     
      	
       
        It needs to obtain the backing store used for the stack, i.e.,
        allocating a dataspace from the component's PD session as initialized
        by the parent.
       

      

      	
       
        It needs to preserve a portion of its virtual address space for placing
        the stack and make the allocated memory visible within this portion.
       

      

     

     
      In order to solve both problems, the function needs to obtain the capability
      for its PD session from its parent. This comes down to
      the need to perform RPC calls. First, for requesting the PD
      session capability from the parent, and second, for invoking the session
      capability to perform the RAM allocation and region-map attach operations.
     

     
      The RPC mechanism is based on C++. In particular, the mechanism supports
      the propagation of C++ exceptions across RPC interfaces. Hence,
      before being able to perform RPC calls, the program must initialize
      the C++ runtime including the exception-handling support.
      The initialization of the C++ runtime, in turn, requires support for
      dynamically allocating memory. Hence, a heap must be available.
      This chain of dependencies ultimately results in the need to construct the
      entire Genode environment as a side effect of initializing the real stack of
      the program.
     

     
      During the construction of the Genode environment, the program requests its
      own CPU, PD, and LOG sessions from its parent.
     

     
      With the environment constructed, the program is able to interact
      with its own PD session and can principally realize the
      initialization of the real stack. However, instead of merely allocating
      a new RAM dataspace and attaching the dataspace to the address space of the
      PD session, a so-called stack area is used. The stack area
      is a secondary region map that is attached as a dataspace to the component's
      address-space region map.
      This way, virtual-memory allocations within the stack area can be
      managed manually. I.e., the spaces between the stacks of different threads are
      guaranteed to remain free from any attached dataspaces.
      The stack area of a component is created as part of the component's PD
      session. The environment initialization code requests its region-map
      capability via Pd_session::stack_area and attaches it as a managed dataspace
      to the component's address space.
     

    
    
    Component-dependent startup code

     
      With the Genode environment constructed and the initial stack switched
      to a proper stack located in the stack area, the component-dependent
      startup code of the _main function in repos/base/src/lib/startup/_main.cc can be
      executed. This code is responsible for calling the global constructors
      of the program before calling the program's main function.
     

     
      In accordance to the established signature of the main function, taking
      an argument list and an environment as arguments, the startup code supplies
      these arguments but uses dummy default values. However, since the values
      are taken from the global variables genode_argv, genode_argc, and
      genode_envp, a global constructor is able to override the default values.
     

     
      The startup code in _main.cc is accompanied with support for atexit
      handling. The atexit mechanism allows for the registration of handlers
      to be called at the exit of the program. It is provided in the form of
      a POSIX API by the C runtime. But it is also used by the compiler to
      schedule the execution of the destructors of function-local static objects.
      For the latter reason, the atexit mechanism cannot be merely provided
      by the (optional) C runtime but must be supported by the base library.
     

   

  
  
  C++ runtime

   
    Genode is implemented in C++ and relies on all C++ features required to use
    the language in its idiomatic way. This includes the use of exceptions
    and runtime-type information.
   

   
   
   Rationale behind using exceptions

   
    
     Compared to return-based error handling as prominently used in C programs, the
     C++ exception mechanism is much more complex. In particular, it requires the use
     of a C++ runtime library that is called as a back-end by the exception handling code
     and generated by the compiler. This library contains the functionality needed to
     unwind the stack and a mechanism for obtaining runtime type
     information (RTTI). The C++ runtime libraries that come with common tool
     chains, in turn, rely on a C library for performing dynamic memory
     allocations, string operations, and I/O operations. Consequently, C++ programs
     that rely on exceptions and RTTI implicitly depend on a C library. For this
     reason, the use of those C++ features is universally disregarded for low-level
     operating-system code that usually does not run in an environment where a
     complete C library is available.
    

    
     In principle, C++ can be used without exceptions and RTTI (by passing the
     arguments -fno-exceptions and -fno-rtti to GCC). However, without
     those features, it is hardly possible to use the language as designed.
    

    
     For example, when the operator new is used, it performs two steps:
     Allocating the memory needed to hold the to-be-created object and calling
     the constructor of the object with the return value of the allocation
     as this pointer. In the event that the memory allocation fails, the only
     way for the allocator to propagate the out-of-memory condition is throwing an
     exception. If such an exception is not thrown, the constructor would be
     called with a null as this pointer.
    

    
     Another example is the handling of errors during the construction of an
     object. The object construction may consist of several consecutive
     steps such as the construction of base classes and aggregated objects.
     If one of those steps fails, the construction of the overall object remains
     incomplete. This condition must be propagated to the code that issued the
     object construction. There are two principle approaches:
    

    
     	
      
       The error condition can be kept as an attribute in the object. After
       constructing the object, the user of the object may detect the error
       condition by requesting the attribute value.
       However, this approach is plagued by the following problems.
      

      
       First, the failure of one step
       may cause subsequent steps to fail as well. In the worst case, if the
       failed step initializes a pointer that is passed to subsequent
       steps, the subsequent steps may use an uninitialized pointer. Consequently,
       the error condition must eventually be propagated to subsequent steps,
       which, in turn, need to be implemented in a defensive way.
      

      
       Second, if the construction failed, the object exists but it is inconsistent.
       In the worst case, if the user of the object misses to check for the
       successful construction, it will perform operations on an inconsistent
       object. But even in the good case, where the user detects the
       incomplete construction and decides to immediately destruct the object, the
       destruction is error prone.
       The already performed steps may have had side effects such as resource
       allocations. So it is important to revert all the successful steps by
       invoking their respective destructors. However, when destructing the
       object, the destructors of the incomplete steps are also called.
       Consequently, such destructors need to be implemented in a defensive
       manner to accommodate this situation.
      

      
       Third, objects cannot have references that depend on potentially failing
       construction steps. In contrast to a pointer that may be marked as
       uninitialized by being a null pointer, a reference is, by definition,
       initialized once it exists. Consequently, the result of such a step can
       never be passed as reference to subsequent steps. Pointers must be used.
      

      
       Fourth, the mere existence of incompletely constructed
       objects introduces many variants of possible failures that need
       to be considered in the code. There may be many different stages of
       incompleteness. Because of the third problem,
       every time a construction step takes the result of a previous step as an
       argument, it explicitly has to consider the error case.
       This, in turn, tremendously inflates the test space of the code.
      

      
       Furthermore, there needs to be a convention of how the completion of an
       object is indicated. All programmers have to learn and follow the convention.
      

     

     	
      
       The error condition triggers an exception. Thereby, the object construction
       immediately stops at the erroneous step. Subsequent steps are not
       executed at all. Furthermore, while unwinding the stack, the exception
       mechanism reverts all already completed steps by calling their respective
       destructors. Consequently, the construction of an object can be considered
       as a transaction. If it succeeds, the object is known to be completely
       constructed. If it fails, the object immediately ceases to exist.
      

     

    

    
     Thanks to the transactional semantics of the second variant, the state space
     for potential error conditions (and thereby the test space) remains small.
     Also, the second variant facilitates the use of references as class members,
     which can be safely passed as arguments to subsequent constructors. When
     receiving such a reference as argument (as opposed to a pointer), no
     validity checks are needed.
     Consequently, by using exceptions, the robustness of object-oriented code
     (i.e., code that relies on C++ constructors) can be greatly improved over code
     that avoids exceptions.
    

   

   
   
   Bare-metal C++ runtime

   
    
     Acknowledging the rationale given in the previous section, there is
     still the problem of the complexity added by the exception mechanism.
     For Genode, the complexity of the trusted computing base is a fundamental
     metric. The C++ exception mechanism with its dependency to the C library
     arguably adds significant complexity. The code complexity of a C
     library exceeds the complexity of the fundamental components (such as the
     kernel, core, and init) by an order of magnitude. Making the fundamental
     components depend on such a C library would jeopardize one of Genode's most
     valuable assets, which is its low complexity.
    

    
     To enable the use of C++ exceptions and runtime type information but
     avoid the incorporation of an entire C library into the trusted computing
     base, Genode comes with a customized C++ runtime that does not depend on
     a C library. The C++ runtime libraries are provided by the tool chain,
     which interface with the symbols provided by Genode's C++ support code
     (repos/base/src/lib/cxx).
    

    
     Unfortunately, the interface used by the C++ runtime does not reside
     in a specific namespace but it is rather a subset of the POSIX API. When
     linking a real C library to a Genode component, the symbols present in the
     C library would collide with the symbols present in Genode's C++ support code.
     For this reason, the C++ runtime (of the compiler) and Genode's C++
     support code are wrapped in a single library (repos/base/lib/mk/cxx.mk) in
     a way that all POSIX functions remain hidden. All the references of the
     C++ runtime are resolved by the C++ support code, both wrapped in the cxx
     library. To the outside, the cxx library solely exports the CXA ABI as
     required by the compiler.
    

   

  
  
  Interaction of core with the underlying kernel

   
    Core is the root of the component tree. It is initialized and started
    directly by the underlying kernel and has two purposes. First, it makes
    the low-level physical resources of the machine available to other components
    in the form of services. These resources are physical memory, processing
    time, device resources, initial boot modules, and protection mechanisms (such
    as the MMU, IOMMU, and virtualization extensions). It thereby
    hides the peculiarities of the used kernel behind an API that is uniform
    across all kernels supported by Genode. Core's second purpose is the
    creation of the init component by using its own services and following the
    steps described in Section Component creation.
   

   
    Even though core is executed in user mode, its role as the root of the
    component tree makes it as critical as the kernel. It just happens to be
    executed in a different processor mode. Whereas regular components solely
    interact with the kernel when performing inter-component communication, core
    interplays with the kernel more intensely. The following subsections go
    into detail about this interplay.
   

   
    The description tries to be general across the various kernels supported
    by Genode. Note, however, that a particular kernel may deviate from the
    general description.
   

   
   
   System-image assembly

   
    
     A Genode-based system consists of potentially many boot modules. But boot
     loaders - in particular on ARM platforms - usually support the loading of a
     single system image only. To unify the boot procedure across kernels and CPU
     architectures, on all kernels except Linux, Genode merges boot modules
     together with the core component into a single image.
    

    
     The core component is actually built as a library. The library
     description file is specific for each platform and located at
     lib/mk/spec/<pf>/core.mk where <pf> corresponds to the
     hardware platform used. It includes the platform-agnostic lib/mk/core.inc file.
     The library contains everything core needs (including the C++ runtime and
     the core code) except the following symbols:
    

    
     	_boot_modules_headers_begin and _boot_modules_headers_end

     	
      
       Between those symbols, core expects an array of boot-module header
       structures. A boot-module header contains the name, core-local
       address, and size of a boot module. This meta data is used by
       core's initialization code in src/core/platform.cc to populate the ROM
       service with modules.
      

     

     	_boot_modules_binaries_begin and _boot_modules_binaries_end

     	
      
       Between those symbols, core expects the actual module data.
       This range is outside the core image (beyond _prog_img_end).
       In contrast to the boot-module headers, the modules reside in a
       separate section that remains unmapped within core's virtual address
       space. Only when access to a boot module is required by core (i.e., the
       ELF binary of init during the creation of the init component), core
       makes the module visible within its virtual address space.
      

      
       Making the boot modules invisible to core has two benefits. The
       integrity of the boot modules does not depend on core. Even in the
       presence of a bug in core, the boot modules cannot be accidentally
       overwritten. Second, no page-table entries are needed to map
       the modules into the virtual address space of core. This is particularly
       beneficial when using large boot modules such as a complete disk image.
       If incorporated into the core image, page-table
       entries for the entire disk image would need to be allocated at
       the initialization time of core.
      

     

    


    
     These symbols are defined in an assembly file called boot_modules.s.
     When building core stand-alone, the final linking stage combines the
     core library with the dummy boot_modules.s file located at
     src/core/boot_modules.s.
     But when using the run tool (Section Run tool) to integrate a
     bootable system image, the run tool dynamically generates a version of
     boot_modules.s depending on the boot modules listed in the run script
     and repeats the final linking
     stage of core by combining the core library with the generated
     boot_modules.s file.
     The generated file is placed at <build-dir>/var/run/<scenario>/
     and incorporates the boot modules using the assembler's .incbin directive.
     The result of the final linking stage is an executable ELF binary that
     contains both core and the boot modules.
    

   

   
   
   Bootstrapping and allocator setup

   
    
     At boot time, the kernel passes information about the physical resources and
     the initial system state to core. Even though the mechanism and format of this
     information varies from kernel to kernel, it generally covers the following
     aspects:
    

    
     	
      
       A list of free physical memory ranges
      

     

     	
      
       A list of the physical memory locations of the boot modules along with their
       respective names
      

     

     	
      
       The number of available CPUs
      

     

     	
      
       All information needed to enable the initial thread to perform kernel
       operations
      

     

    

    
    
    Core's allocators

     
      Core's kernel-specific platform initialization code (core/platform.cc)
      uses this information to initialize the allocators used for keeping track
      of physical resources. Those allocators are:
     

     
      	RAM allocator

      	
       
        contains the ranges of the available physical memory
       

      

      	I/O memory allocator

      	
       
        contains the physical address ranges of unused
        memory-mapped I/O resources. In general, all ranges not initially present in
        the RAM allocator are considered to be I/O memory.
       

      

      	I/O port allocator

      	
       
        contains the I/O ports on x86-based platforms that are
        currently not in use. This allocator is initialized with the entire
        I/O port range of 0 to 0xffff.
       

      

      	IRQ allocator

      	
       
        contains the IRQs that are associated with IRQ sessions.
        This allocator is initialized with the entirety of the available IRQ
        numbers.
       

      

      	Core-region allocator

      	
       
        contains the virtual memory regions of core that
        are not in use.
       

      

     


     
      The RAM allocator and core-region allocator are subsumed in the so-called
      core-memory allocator. In addition to aggregating both allocators, the
      core-memory allocator allows for the allocation of core-local virtual-memory
      regions that can be used for holding core-local objects. Each region
      allocated from the core-memory allocator has to satisfy three conditions:
     

     
      	
       
        It must be backed by a physical memory range (as allocated from the RAM
        allocator)
       

      

      	
       
        It must have assigned a core-local virtual memory range (as allocated
        from the core-region allocator)
       

      

      	
       
        The physical-memory range must have the same size as the virtual-memory range
       

      

      	
       
        The virtual memory range must be mapped to the physical memory range using
        the MMU
       

      

     

     
      Internally, the core-memory allocator maintains a so-called mapped-memory
      allocator that contains ranges of ready-to-use core-local memory. If a new
      allocation exceeds the available capacity, the core-memory allocator expands
      its capacity by allocating a new physical memory region from the RAM
      allocator, allocating a new core-virtual memory region from the core-region
      allocator, and installing a mapping from the virtual region to the physical
      region.
     

     
      All memory allocations mentioned above are performed at the granularity of
      physical pages, i.e., 4 KiB.
     

     
      The core-memory allocator is expanded on demand but never shrunk.
      This makes it unsuitable for allocating objects on behalf of core's clients
      because allocations could not be reverted when closing a session.
      It is solely used for dynamic memory allocations at startup (e.g., the
      memory needed for keeping the information about the boot modules),
      and for keeping meta data for the allocators themselves.
     

   

   
   
   Kernel-object creation

   
    
     Kernel objects are objects maintained within the kernel and used by the
     kernel.
     The exact notion of what a kernel object represents depends on the actual
     kernel as the various kernels differ with respect to the abstractions they
     provide.
     Typical kernel objects are threads and protection domains.
     Some kernels have kernel objects for memory mappings while others provide
     page tables as kernel objects.
     Whereas some kernels represent scheduling parameters as distinct kernel
     objects, others subsume scheduling parameters to threads.
     What all kernel objects have in common, though, is that they consume kernel
     memory.
     Most kernels of the L4 family preserve a fixed pool of memory for the
     allocation of kernel objects.
    

    
     If an arbitrary component were able to perform a kernel operation that triggers
     the creation of a kernel object, the memory consumption of the kernel would
     depend on the good behavior of all components. A misbehaving component may
     exhaust the kernel memory.
    

    
     To counter this problem, on Genode, only core triggers the creation of kernel
     objects and thereby guards the consumption of kernel memory. Note, however,
     that not all kernels are able to prevent the creation of kernel objects
     outside of core.
    

   

   
   
   Page-fault handling

   
    
     Each time a thread within the Genode system triggers a page fault, the kernel
     reflects the page fault along with the fault information as a message to the
     user-level page-fault handler residing in core.
     The fault information comprises the identity and instruction pointer of the
     faulted thread, the page-fault address, and the fault type (read, write,
     execute).
     The page-fault handler represents each thread as a so-called pager object,
     which encapsulates the subset of the thread's interface that is needed to
     handle page faults.
     For handling the page fault, the page-fault handler first looks up the pager
     object that belongs to the faulting thread's identity,
     analogously to how an RPC entrypoint looks up the RPC object for an incoming
     RPC request.
     Given the pager object, the fault is handled by calling the pager function
     with the fault information as argument. This function is implemented by
     the so-called Rm_client (repos/base/src/core/region_map_component.cc),
     which represents the association of the pager object
     with its virtual address space (region map). Given the context
     information about the region map of the thread's PD, the pager function
     looks up the region within the region map, on which the page fault occurred.
     The lookup results in one of the following three cases:
    

    
     	Region is populated with a dataspace

     	
      
       If a dataspace is attached at the fault address, the backing store of the
       dataspace is determined.
       Depending on the kernel, the backing store
       may be a physical page, a core-local page, or another reference to a physical
       memory page.
       The pager function then installs a memory mapping from the virtual page where
       the fault occurred to the corresponding part of the backing store.
      

     

     	Region is populated with a managed dataspace

     	
      
       If the fault occurred within a region where a managed dataspace is
       attached, the fault handling is forwarded to the region map that
       represents the managed dataspace.
      

     

     	Region is empty

     	
      
       If no dataspace could be found at the fault address, the fault cannot
       be resolved. In this case, core submits an region-map-fault signal to the
       region map where the fault occurred. This way, the region-map client has
       the chance to detect and possibly respond to the fault. Once the signal
       handler receives a fault signal, it is able to query the fault address
       from the region map.
       As a response to the fault, the region-map client may attach a dataspace at
       this address.
       This attach operation, in turn, will prompt core to wake up the thread
       (or multiple threads) that faulted within the attached region.
       Unless a dataspace is attached at the page-fault address, the faulting
       thread remains blocked.
       If no signal handler for region-map faults is registered for the region map,
       core prints a diagnostic message and blocks the faulting thread forever.
      

     

    


    
     To optimize the TLB footprint and the use of kernel memory, region maps
     do not merely operate at the granularity of memory pages but on
     address ranges whose size and alignment are arbitrary power-of-two values (at
     least as large as the size of the smallest physical page).
     The source and destinations of memory mappings may span many pages.
     This way, depending on the kernel and the architecture, multiple pages may be
     mapped at once, or large page-table mappings can be used.
    

   

  
  
  Asynchronous notification mechanism

   
    Section Asynchronous notifications introduces asynchronous notifications
    (signals) as one of the fundamental inter-component communication mechanisms.
    The description covers the semantics of the mechanism but the question of how
    the mechanism relates to core and the underlying kernel remains unanswered.
    This section complements Section Asynchronous notifications with those
    implementation details.
   

   
    Most kernels do not directly support the semantics of asynchronous
    notifications as presented in Section Asynchronous notifications. As a
    reminder, the mechanism has the following features:
   

   
    	
     
      The authority for triggering a signal is represented by a signal-context
      capability, which can be delegated via the common capability-delegation
      mechanism described in
      Section Capability delegation through capability invocation.
     

    

    	
     
      The submission of a signal is a fire-and-forget operation. The signal
      producer is never blocked.
     

    

    	
     
      On the reception of a signal, the signal handler can obtain the context
      to which the signal refers. This way, it is able to distinguish
      different sources of events.
     

    

    	
     
      A signal receiver can wait or poll for potentially many signal
      contexts.
      The number of signal contexts associated with a single signal receiver is not
      limited.
     

    

   

   
    The gap between this feature set and the mechanisms provided by the underlying
    kernel is bridged by core as part of the PD service. This service
    plays the role of a proxy between the producers and receivers of signals.
    Each component that interacts with signals has a session to this service.
   

   
    Within core, a signal context is represented as an RPC object. The RPC object
    maintains a counter of signals pending for this context. Signal
    contexts can be created and destroyed by the clients of the PD service
    using the alloc_context and free_context RPC functions. Upon the creation
    of a signal context, the PD client can specify an integer value called
    imprint with a client-local meaning. Later, on the reception of signals,
    the imprint value is delivered along with the signal to enable the
    client to tell the contexts of the incoming signals apart. As a result of
    the allocation of a new signal context, the client obtains a signal-context
    capability. This capability can be delegated to other components using
    the regular capability-delegation mechanism.
   

   
   
   Signal submission

    
     A component in possession of a signal-context capability is able to trigger
     signals using the submit function
     of its PD session. The submit function takes the signal context capability
     of the targeted context and a counter value as arguments. The capability as
     supplied to the submit function does not need to originate from the called
     session. It may have been created and delegated by another component.
     Note that even though a signal context is an RPC object, the submission of a
     signal is not realized as an invocation of this object. The signal-context
     capability is merely used as an RPC function argument. This design accounts
     for the fact that signal-context capabilities may originate from untrusted
     peers as is the case for servers that deliver asynchronous notifications
     to their clients.
     A client of such a server supplies a signal-context capability as argument
     to one of the server's RPC functions.
     An example is the input session interface (Section Input) that allows the
     client to get notified when new user input becomes available.
     A malicious client may specify a capability that was not created via core's
     PD service but that instead refers to an RPC object local to the client.
     If the submit function was an RPC function of the signal context, the
     server's call of the submit RPC function would eventually invoke the
     RPC object of the client. This would put the client in a position where
     it may block the server indefinitely and thereby make the server unavailable to
     all clients. In contrast to the untrusted signal-context capability, the
     PD session of a signal producer is by definition trusted. So it is safe
     to invoke the submit RPC function with the signal-context capability as
     argument. In the case where an invalid signal-context capability is delegated
     to the signal producer, core will fail to look up a signal context for the
     given capability and omit the signal.
    

   
   
   Signal reception

    
     For receiving signals, a component needs a way to obtain information about
     pending signals from core. This involves two steps: First, the component
     needs a way to block until signals are available. Second, if a signal is
     pending, the component needs a way to determine the signal context and the
     signal receiver associated with the signal and wake up the thread that
     blocks the Signal_receiver::block_for_signal API function.
    

    
     Both problems are solved by a dedicated thread that is spawned during
     component startup. This signal thread blocks at core's PD
     service for incoming signals. The blocking operation is not directly
     performed on the PD session but on a decoupled RPC object called
     signal source.
     In contrast to the PD session interface that is kernel agnostic, the
     underlying kernel mechanism used for blocking
     the signal thread at the signal source depends on the used base
     platform.
    

    
     The signal-source RPC object implements an RPC interface, on which the PD
     client issues a blocking wait_for_signal RPC function.
     This function blocks as long as no signal that refers to the session's signal
     contexts is pending. If the function returns, the return value contains the
     imprint that was assigned to the signal context at its creation and
     the number of signals pending for this context.
     On most base platforms, the implementation of the blocking RPC interface is
     realized by processing RPC requests and responses out of order to enable one
     entrypoint in core to serve all signal sources. Core uses a dedicated
     entrypoint for the signal-source handling to decouple the delivery of signals
     from potentially long-taking operations of the other core services.
    

    
     Given the imprint value returned by the signal source, the signal thread
     determines the signal context and signal receiver that belongs to the pending
     signal (using a data structure called Signal_context_registry) and locally
     submits the signal to the signal-receiver object. This, in turn, unblocks the
     Signal_receiver::block_for_signal function at the API level.
    

  
  
  Parent-child interaction in detail

   
    On a conceptual level, the session-creation procedure as described in
    Section Services and sessions appears as a synchronous interaction
    between the parent and its child components. The interaction serves three
    purposes. First, it is used to communicate information between different
    protection domains, in this case the parent, the client, and the server.
    Second, it implicitly dictates the flow of control between the involved
    parties because the caller blocks until the callee replies.
    Third, the interplay delegates authority (in particular authority to
    access the server's session object) between protection domains. The latter is
    realized with the kernel's ability to carry capabilities as IPC message
    payload.
   

   	
     
     [image: img/async_session_seq]
   
	
      Parent-child interplay during the creation of a new session. The dotted lines are asynchronous notifications, which have fire-and-forget semantics. A component that triggers a signal does not block.

   


   
    On the surface, the interaction looks like a sequence of synchronous RPC
    calls. However, under the hood, the interplay between the parent and its
    children is based on a combination of asynchronous notifications from
    the parent to the children and synchronous RPC from the children to the
    parent. The protocol is designed such that the parent's liveliness remains
    independent from the behavior of its children, which must generally be
    regarded as untrusted from the parent's perspective. The sequence of creating
    a session is depicted in Figure img/async_session_seq.
    The following points are worth noting:
   

   
    	
     
      Sessions are identified via IDs, which are plain numbers as opposed to
      capabilities. The IDs as seen by the client and server belong to different
      ID name spaces.
      IDs of sessions requested by the client are allocated by the client. IDs
      of sessions requested at the server are allocated by the parent.
     

    

    	
     
      The parent does not issue RPC calls to any of its children.
     

    

    	
     
      Each activation of the parent merely applies a state change of the session's
      meta data structures maintained at the parent, which capture the entire
      state of session requests.
     

    

    	
     
      The information about pending session requests is communicated from the
      parent to the server via a ROM session. At startup, the server requests
      a ROM session for the ROM module "session_requests" from its parent. The
      parent implements this ROM session locally. Since ROM sessions support
      versions, the parent can post version updates of the "session_requests"
      ROM with the regular mechanisms already present in Genode.
     

    

    	
     
      The parties involved can potentially run in parallel.
     

    

   

  
  
  Dynamic linker

   
    The dynamic linker is a mechanism for loading ELF binaries that are
    dynamically-linked against shared libraries.
   

   
   
   Building dynamically-linked programs

   
    
     The build system automatically decides whether a program is linked statically
     or dynamically depending on the use of shared libraries. If the target
     is linked against at least one shared library, the resulting ELF image
     is a dynamically-linked program. Almost all Genode components are linked
     against the Genode application binary interface (ABI), which is a shared
     library. Therefore, components are dynamically-linked programs unless a
     kernel-specific base library is explicitly used.
    

    
     The entrypoint of a dynamically-linked program is the Component::construct
     function.
    

   

   
   
   Startup of dynamically-linked programs

   
    
     When creating a new component,
     the parent first detects whether the to-be-loaded ELF binary represents
     a statically-linked program or a dynamically-linked program by inspecting
     the ELF binary's program-header information (see
     repos/base/src/lib/base/elf_binary.cc).
     If the program is statically linked, the parent follows the procedure as
     described in Section Component creation. If the program is dynamically
     linked, the parent remembers the dataspace of the program's ELF image but
     starts the ELF image of the dynamic linker instead.
    

    
     The dynamic linker is a regular Genode component that follows the startup
     procedure described in Section Startup code. However, because of its
     hybrid nature, it needs to take special precautions before using any
     data that contains relocations. Because the dynamic linker is a shared
     library, it contains data relocations. Even though the linker's code is
     position independent and can principally be loaded to an arbitrary address,
     global data objects may contain pointers to other global data objects or
     code. For example, vtable entries contain pointers to code. Those pointers
     must be relocated depending on the load address of the binary. This step is
     performed by the init_rtld hook function, which was already mentioned in
     Section Startup code. Global data objects must not be used before calling
     this function. For this reason, init_rtld is called at the earliest possible
     time directly from the assembly startup code.
     Apart from the call of this hook function, the startup of the dynamic linker
     is the same as for statically-linked programs.
    

    
     The main function of the dynamic linker obtains the binary of the actual
     dynamically-linked program by requesting a ROM session for the module
     "binary". The parent responds to this request by handing out a
     locally-provided ROM session that contains the dataspace of the actual
     program. Once the linker has obtained the dataspace containing the
     dynamically-linked program, it loads the program and all required shared
     libraries. The dynamic linker requests each shared library as a ROM
     session from its parent.
    

    
     After completing the loading of all ELF objects, the dynamic linker determines
     the entry point of the loaded binary by looking up the Component::construct
     symbol and calls it as a function. Note that this particular symbol is
     ambiguous as both the dynamic linker and the loaded program have such a
     function. Hence, the lookup is performed explicitly on the loaded program.
    

   

   
   
   Address-space management

   
    
     To load the binary and the associated shared libraries, the linker does not
     directly attach dataspaces to its address space. Instead, it manages a dedicated
     part of the component's virtual address space called linker area manually.
     The linker area is a region map that is created as part of a PD session.
     The dynamic linker attaches the linker area as a managed dataspace to its
     address space. This way, the linker can precisely
     control the layout within the virtual-address range covered by the managed
     dataspace. This control is needed because the loading of an ELF object does
     not correspond to an atomic attachment of a single dataspace but it involves
     consecutive attach operations for multiple dataspaces, one for each ELF
     segment. When attaching one segment, the linker must make sure that there is
     enough space beyond the segment to host the next segment. The use of a managed
     dataspace allows the linker to manually allocate large-enough portions of
     virtual memory and populate them in multiple steps.
    

   

  
  
  Execution on bare hardware (base-hw)

   
    The code specific to the base-hw platform is located within the
    repos/base-hw/ directory. In the following description, unless explicitly
    stated otherwise, all paths are relative to this directory.
   

   
    In contrast to classical L4 microkernels where Genode's core process runs as
    user-level roottask on top of the kernel, base-hw executes Genode's core
    directly on the hardware with no distinct kernel underneath. Core and the
    kernel are melted into one hybrid component. Although all threads of core are
    running in privileged processor mode, they call a kernel library to synchronize
    hardware interaction. However, most work is done outside of that library. This
    design has several benefits. First, the kernel part becomes much simpler. For
    example, there are no allocators needed within the kernel. Second, base-hw side-steps
    long-standing difficult kernel-level problems, in particular the management of kernel
    resources. For the allocation of kernel objects, the hybrid core/kernel can
    employ Genode's user-level resource trading concepts as described in Section
    Resource trading. Finally and most
    importantly, merging the kernel with roottask removes a lot of
    redundancies between both programs. Traditionally, both kernel and roottask
    perform the book keeping of physical-resource allocations and the existence
    of kernel objects such as address spaces and threads. In base-hw, those data
    structures exist only once. The complexity of the combined kernel/core is
    significantly lower than the sum of the complexities of a traditional
    self-sufficient kernel and a distinct roottask on top. This way, base-hw helps
    to make Genode's TCB less complex.
   

   
    The following subsections detail the problems that base-hw had to address
    to become a self-sufficient base platform for Genode.
   

   
   
   Bootstrapping of base-hw

   
    
    
    Startup of the base-hw kernel

     
      Core on base-hw uses Genode's regular linker script. Like any
      regular Genode component, its execution starts at the _start symbol.
      But unlike a regular component, core is started by the bootstrap component as
      a kernel running in privileged mode. Instead of directly following the startup
      procedure described in Section Startup code, base-hw uses custom startup code
      that initializes the kernel part of core first. For example, the startup code
      for the ARM architecture is located at src/core/spec/arm/crt0.s.
      It calls the kernel initialization code in src/core/kernel/init.cc.
      Core's regular C++ startup code (the _main function) is executed by the first
      thread created by the kernel (see the thread setup in the
      Core_thread::Core_thread() constructor).
     

   

   
   
   Kernel entry and exit

   
    
     The execution model of the kernel can be roughly characterized as a
     single-stack kernel. In contrast to traditional L4 kernels that maintain one
     kernel thread per user thread, the base-hw kernel is a mere state machine
     that never blocks in the kernel. State transitions are triggered by
     core or user-level threads that enter the kernel via a system call, by device
     interrupts, or by a CPU exception. Once entered, the kernel applies the state
     change depending on the event that caused the kernel entry, and leaves the
     kernel again. The transition between normal threads and kernel execution
     depends on the concrete architecture. For ARM, the corresponding code is located
     at src/core/spec/arm/exception_vector.s.
    

   

   
   
   Interrupt handling and preemptive multi-threading

   
    
     In order to respond to interrupts, base-hw has to contain a driver for
     the interrupt controller. The interrupt-controller driver for
     a particular hardware platform can be found at src/core/spec/<spec>/pic.h
     and the corresponding src/core/spec/<spec>/pic.cc. Whereby <spec>
     refers to a particular platform (e.g., imx53) or an IP block that is
     is used across different platforms (e.g., arm_gic for ARM's generic
     interrupt controller).
     Each of the drivers implement the same interface. When building core,
     the build system uses the build-spec mechanism explained in
     Section Build system to incorporate the single driver needed for the
     targeted SoC.
    

    
     To support preemptive multi-threading, base-hw requires a hardware timer.
     The timer is programmed with the time slice length of the currently
     executed thread. Once the programmed timeout elapses, the timer device
     generates an interrupt that is handled by the kernel. Similarly to
     interrupt controllers, there exist a variety of different timer devices
     for different CPUs. Therefore, base-hw contains different timer drivers.
     The timer drivers are located at src/core/spec/<spec>/timer.h
     where <spec> refers to the timer variant.
    

    
     The in-kernel handler of the timer interrupt invokes the thread scheduler
     (src/core/kernel/cpu_scheduler.h).
     The scheduler maintains a list of so-called scheduling contexts where each
     context refers to a thread. Each time the kernel is entered, the scheduler
     is updated with the passed duration. When updated, it takes a scheduling
     decision by making the next to-be-executed thread the head of the list.
     At kernel exit, the control is passed to the user-level thread that
     corresponds to the head of the scheduler list.
    

   

   
   
   Split kernel interface

   
    
     The system-call interface of the base-hw kernel is split into two parts.
     One part is usable by all components and solely contains system calls for
     inter-component communication and thread synchronization. The definition
     of this interface is located at include/kernel/interface.h. The second
     part is exposed only to core. It supplements the public interface with
     operations for the creation, the management, and the destruction of kernel
     objects. The definition of the core-private interface is located at
     src/core/kernel/core_interface.h.
    

    
     The distinction between both parts of the kernel interface is enforced
     by the function Thread::_call in src/core/kernel/thread.cc.
    

   

   
   
   Public part of the kernel interface

   
    
     Threads do not run independently but interact with each other via synchronous
     inter-component communication as detailed in Section
     Inter-component communication. Within base-hw, this mechanism is referred
     to as IPC (for inter-process communication).
     To allow threads to perform calls to other threads or to receive RPC requests,
     the kernel interface is equipped with system calls for performing IPC
     (send_request_msg, await_request_msg, send_reply_msg).
     To keep the kernel as simple as possible, IPC is performed using so-called
     user-level thread-control blocks (UTCB).
     Each thread has a corresponding memory page that is always
     mapped in the kernel. This UTCB page is used to carry IPC payload. The largely
     simplified procedure of transferring a message is as follows. (In reality, the
     state space is more complex because the receiver may not be in a blocking state
     when the sender issues the message)
    

    
     	
      
       The sender marshals its payload into its UTCB and invokes the kernel,
      

     

     	
      
       The kernel transfers the payload from the sender's UTCB to the receiver's
       UTCB and schedules the receiver,
      

     

     	
      
       The receiver retrieves the incoming message from its UTCB.
      

     

    

    
     Because all UTCBs are always mapped in the kernel, no page faults can occur
     during the second step. This way, the flow of execution within the kernel
     becomes predictable and no kernel exception handling code is needed.
    

    
     In addition to IPC, threads interact via the synchronization primitives
     provided by the Genode API. To implement these portions of the API, the kernel
     provides system calls for managing the execution control of threads
     (stop_thread, restart_thread, yield_thread).
    

    
     To support asynchronous notifications as described in Section
     Asynchronous notifications, the kernel provides system calls for the
     submission and reception of signals (await_signal, cancel_next_await_signal,
     submit_signal, and ack_signal) as well as the life-time management
     of signal contexts (kill_signal_context). In contrast to other
     base platforms, Genode's signal API is directly supported by the kernel
     so that the propagation of signals does not require any interaction with
     core's PD service.
     However, the creation of signal contexts is arbitrated by the PD service.
     This way, the kernel objects needed for the signalling mechanism are
     accounted to the corresponding clients of the PD service.
    

    
     The kernel provides an interface to make the kernel's scheduling timer
     available as time source to the user land. Using this interface,
     components can bind signal contexts to timeouts (timeout) and
     follow the progress of time (timeout_age_us and timeout_max_us).
    

   

   
   
   Core-private part of the kernel interface

   
    
     The core-private part of the kernel interface allows core to perform
     privileged operations. Note that even though the kernel and core provide
     different interfaces, both are executed in privileged CPU mode, share
     the same address space and ultimately trust
     each other. The kernel is regarded a mere support library of core that
     executes those functions that shall be synchronized between different
     CPU cores and core's threads. In particular, the kernel does not perform
     any allocation. Instead, the allocation of kernel objects is performed as
     an interplay of core and the kernel.
    

    
     	
      
       Core allocates physical memory from its physical-memory allocator.
       Most kernel-object allocations are performed in the context of one
       of core's services. Hence, those allocations can be properly accounted
       to a session quota (Section Resource trading). This way, kernel objects
       allocated on behalf of core's clients are "paid for" by those clients.
      

     

     	
      
       Core allocates virtual memory to make the allocated physical memory visible
       within core and the kernel.
      

     

     	
      
       Core invokes the kernel to construct the kernel object at the location
       specified by core. This kernel invocation is actually a system call that
       enters the kernel via the kernel-entry path.
      

     

     	
      
       The kernel initializes the kernel object at the virtual address specified
       by core and returns to core via the kernel-exit path.
      

     

    

    
     The core-private kernel interface consists of the following operations:
    

    
     	
      
       The creation and destruction of protection domains
       (new_pd, update_pd, delete_pd), invoked by the PD service
      

     

     	
      
       The creation, manipulation, and destruction of threads
       (new_thread, start_thread, resume_thread, thread_quota,
       pause_thread, delete_thread, thread_pager, and _cancel_thread_blocking),
       used by the CPU service
       and the core-specific back end of the Genode::Thread API
      

     

     	
      
       The creation and destruction of signal receivers and signal contexts
       (new_signal_receiver, delete_signal_receiver, new_signal_context, and
       delete_signal_context), invoked by the PD service
      

     

     	
      
       The creation and destruction of kernel-protected object identities
       (new_obj, delete_obj)
      

     

     	
      
       The creation, manipulation, and destruction of interrupt kernel objects
       (new_irq, ack_irq, and delete_irq)
      

     

    

   

   
   
   Scheduler of the base-hw kernel

   
    
     CPU scheduling in traditional L4 microkernels is based on static priorities.
     The scheduler always picks the runnable thread with highest priority for
     execution.
     If multiple threads share one priority, the kernel schedules those threads
     in a round-robin fashion.
     Whereas being pretty fast and easy to implement, this scheme has disadvantages:
     First, there is no way to prevent
     high-prioritized threads from starving lower-prioritized ones. Second, CPU time
     cannot be granted to threads and passed between them by the means of quota.
     To cope with these problems without much loss of performance, base-hw employs
     a custom scheduler that deviates from the traditional approach.
    

    
     The base-hw scheduler introduces the distinction between high-throughput-oriented
     scheduling contexts - called fills - and low-latency-oriented
     scheduling contexts - called claims. Examples for typical fills would be
     the processing of a compiler job or the rendering computations of a sophisticated
     graphics program. They shall obtain as much CPU time as the system can spare
     but there is no demand for a high responsiveness. In contrast, an example
     for the claim category would be a typical GUI-software stack covering the
     control flow from user-input drivers through a chain of GUI components to the
     drivers of the graphical output. Another example is a user-level device driver
     that must quickly respond to sporadic interrupts but is otherwise untrusted.
     The low latency of such components is a key factor for usability and
     quality of service. Besides introducing the distinction between claim and fill
     scheduling contexts, base-hw introduces the notion of a so-called
     super period, which is a multiple of typical scheduling time slices, e.g.,
     one second. The entire super period
     corresponds to 100% of the CPU time of one CPU. Portions of it can be assigned
     to scheduling contexts. A CPU quota thereby corresponds to a percentage of the
     super period.
    

    
     At the beginning of a super period, each claim has its full amount of assigned
     CPU quota. The priority defines the absolute scheduling order within the super
     period among those claims that are active and have quota left. As long as
     there exist such claims, the scheduler stays in the claim mode and the quota
     of the scheduled claims decreases. At the end of a super period, the quota of
     all claims is replenished to the initial value. Every time the scheduler can't
     find an active claim with CPU-quota left, it switches to the fill mode. Fills
     are scheduled in a simple round-robin fashion with identical time slices. The
     proceeding of the super period doesn't affect the scheduling order and
     time-slices of this mode. The concept of quota and priority that is
     implemented through the claim mode aligns nicely with Genode's way of
     hierarchical resource management: Through CPU sessions, each process becomes
     able to assign portions of its CPU time and subranges of its priority band to
     its children without knowing the global meaning of CPU time or priority.
    

   

   
   
   Sparsely populated core address space

   
    
     Even though core has the authority over all physical memory, it has no
     immediate access to the physical pages. Whenever core requires access to a
     physical memory page, it first has to explicitly map the physical page into
     its own virtual memory space. This way, the virtual address space of core
     stays clean from any data of other components. Even in the presence of a bug
     in core (e.g., a dangling pointer), information cannot accidentally leak
     between different protection domains because the virtual memory of the other
     components is not necessarily visible to core.
    

   

   
   
   Multi-processor support of base-hw

   
    
     On uniprocessor systems, the base-hw kernel is single-threaded. Its
     execution model corresponds to a mere state machine.
     On SMP systems, it maintains one kernel thread and one scheduler per CPU core.
     Access to kernel
     objects gets fully serialized by one global spin lock that is acquired
     when entering the kernel and released when leaving the kernel. This keeps the
     use of multiple cores transparent to the kernel model, which greatly
     simplifies the code compared to traditional L4 microkernels. Given
     that the kernel is a simple state machine providing lightweight non-blocking
     operations, there is little contention for the global kernel
     lock. Even though this claim may not hold up when scaling to a large number of
     cores, current platforms can be accommodated well.
    

    
    
    Cross-CPU inter-component communication

     
      Regarding synchronous and asynchronous inter-processor communication - thanks
      to the global kernel lock - there is no semantic difference to the uniprocessor
      case. The only difference is that on a multiprocessor system, one processor may
      change the schedule of another processor by unblocking one of its threads
      (e.g., when an RPC call is received by a server that resides on a different CPU
      as the client).
      This condition may rescind the current scheduling choice of the other processor.
      To avoid lags in this case, the kernel lets the unaware target processor trap
      into an inter-processor interrupt (IPI).
      The targeted processor can react to the IPI by taking the decision to
      schedule the receiving thread.
      As the IPI sender does not have to wait for an answer, the sending and
      receiving CPUs remain largely decoupled.
      There is no need for a complex IPI protocol between sender and receiver.
     

    
    
    TLB shootdown

     
      With respect to the synchronization of core-local hardware, there are two
      different situations to deal with. Some hardware components like most ARM
      caches and branch predictors implement their own coherence protocol and thus
      need adaption in terms of configuration only. Others, like the TLBs lack this
      feature. When for instance a page table entry gets invalid, the TLB invalidation
      of the affected entries must be performed locally by each core. To signal the
      necessity of TLB maintenance work, an IPI is sent to all other cores. Once all
      cores have completed the cleaning, the thread that invoked the TLB invalidation
      resumes its execution.
     

   

   
   
   Asynchronous notifications on base-hw

   
    
     The base-hw platform improves the mechanism described in Section
     Asynchronous notification mechanism by introducing signal receivers and
     signal contexts as first-class kernel objects. Core's
     PD service is merely used to arbitrate the creation and destruction of
     those kernel objects but it does not play the role of a signal-delivery proxy.
     Instead, signals are communicated directly by using the public kernel
     operations await_signal, cancel_next_await_signal, submit_signal, and
     ack_signal.
    

   

  
  
  Execution on the NOVA microhypervisor (base-nova)

   
    NOVA is a so-called microhypervisor, denoting the combination of microkernel
    and a virtualization platform (hypervisor). It is a high-performance
    microkernel for the x86 architecture. In contrast to other microkernels,
    it has been designed for hardware-based virtualization via user-level
    virtual-machine monitors. In line with Genode's architecture, NOVA's kernel
    interface is based on capability-based security. Hence, the kernel fully
    supports the model of a Genode kernel as described in Section
    Capability-based security.
   

   
    	NOVA website

    	
     
      http://hypervisor.org
     

    

    	NOVA kernel-interface specification

    	
     
      https://github.com/udosteinberg/NOVA/raw/master/doc/specification.pdf
     

    

   


   
   
   Integration of NOVA with Genode

   
    
     The NOVA kernel is available via Genode's ports mechanism detailed in
     Section Integration of 3rd-party software. The port description is located
     at repos/base-nova/ports/nova.port.
    

    
    
    Building the NOVA kernel

     
      Even though NOVA is a third-party kernel with a custom build system,
      the kernel is built directly by the Genode build system. NOVA's build
      system remains unused.
     

     
      From within a Genode build directory configured for one of the nova_x86_32
      or nova_x86_64 platforms, the kernel can be built via
     


 make kernel


     
      The build description for the kernel is located at
      repos/base-nova/src/kernel/target.mk.
     

    
    
    System-call bindings

     
      NOVA is not accompanied with bindings to its kernel interface. There
      only is a description of the kernel interface in the form of the kernel
      specification available. For this reason, Genode maintains the kernel
      bindings for NOVA within the Genode source tree. The bindings are located
      at repos/base-nova/include/ in the subdirectories nova/, spec/32bit/nova/,
      and spec/64bit/nova/.
     

   

   
   
   Bootstrapping of a NOVA-based system

   
    
     After finishing its initialization, the kernel starts the second boot module,
     the first being the kernel itself, as root task. The root task is Genode's core.
     The virtual address space of core contains the text and data segments of core, the
     UTCB of the initial execution context (EC), and the hypervisor info page (HIP).
     Details about the HIP are provided in Section 6 of the NOVA specification.
    

    
    
    BSS section of core

     
      The kernel's ELF loader does not support the concept of a BSS segment. It
      simply maps the physical pages of core's text and data segments into
      the virtual memory of core but does not allocate any additional physical
      pages for backing the BSS. For this reason, the NOVA version of core
      does not use the genode.ld linker script as described in Section
      Linker scripts but the linker script located at
      repos/base-nova/src/core/core.ld. This version hosts the BSS section
      within the data segment. Thereby, the BSS is physically present in the core
      binary in the form of zero-initialized data.
     

    
    
    Initial information provided by NOVA to core

     
      The kernel passes a pointer to the HIP to core as the initial value of the
      ESP register. Genode's startup code saves this value in the global variable
      _initial_sp (Section Startup code).
     

   

   
   
   Log output on modern PC hardware

   
    
     Because transmitting information over legacy comports does not require
     complex device drivers, serial output over comports is still the predominant
     way to output low-level system logs like kernel messages or the output of
     core's LOG service.
    

    
     Unfortunately, most modern PCs lack dedicated comports. This leaves two
     options to obtain low-level system logs.
    

    
     	
      
       The use of vendor-specific platform-management features such as Intel
       VPro / Intel Advanced Management Technology (AMT) or Intel Platform
       Management Interface (IPMI). These platform features are able to emulate a
       legacy comport and provide the serial output over the network.
       Unfortunately, those solutions are not uniform across different vendors,
       difficult to use, and tend to be unreliable.
      

     

     	
      
       The use of a PCI card or an Express Card that provides a physical comport.
       When using such a device, the added comport appears as PCI I/O resource.
       Because the device interface is compatible to the legacy comports,
       no special drivers are needed.
      

     

    

    
     The latter option allows the retrieval of low-level system logs on hardware
     that lacks special management features.
     In contrast to the legacy comports, however, it has the minor disadvantage
     that the location of the device's I/O resources is not known beforehand.
     The I/O port range of the comport depends on the device-enumeration
     procedure of the BIOS. To enable the kernel to output information
     over this comport, the kernel must be configured with the I/O port range
     as assigned by the BIOS on the specific machine. One kernel binary
     cannot simply be used across different machines.
    

    
    
    The Bender chain boot loader

     
      To alleviate the need to adapt the kernel configuration to the used comport
      hardware, the bender chain boot loader can be used.
     

     
      	Bender is part of the MORBO tools

      	
       
        https://github.com/TUD-OS/morbo
       

      

     


     
      Instead of starting the NOVA hypervisor directly, the multi-boot-compliant
      boot loader (such as GRUB) starts bender as the kernel. All remaining
      boot modules including the real kernel have already been loaded into memory
      by the original boot loader. Bender scans the PCI bus for a comport device.
      If such a device is found (e.g., an Express Card), it writes the information
      about the device's I/O port range to a known offset within the BIOS data
      area (BDA).
     

     
      After the comport-device probing is finished, bender passes control to the
      next boot module, which is the real kernel. The comport device driver of
      the kernel does not use a hard-coded I/O port range for the comport but
      looks up the comport location in the BDA.
      The use of bender is optional. When not used, the BDA always contains the I/O
      port range of the legacy comport 1.
     

     
      The Genode source tree contains a pre-compiled binary of bender at
      tool/boot/bender. This binary is automatically incorporated into boot images
      for the NOVA base platform when the run tool (Section Run tool) is used.
     

   

   
   
   Relation of NOVA's kernel objects to Genode's core services

   
    
     For the terminology of NOVA's kernel objects, refer to the NOVA specification
     mentioned in the introduction of
     Section Execution on the NOVA microhypervisor (base-nova).
     A brief glossary for the terminology used in the remainder of this section is
     given in table 1.
    

    
    
    

    
    
     	   NOVA term
     	
    

     	   PD   EC   SC   HIP   IDC   portal
     	 Protection domain Execution context (thread) Scheduling context Hypervisor information page Inter-domain call (RPC call) communication endpoint
    

    

    
    Table 1: Glossary of NOVA's terminology
    

    
    
    NOVA capabilities are not Genode capabilities

     
      Both NOVA and Genode use the term "capability". However, the term does not have
      the same meaning in both contexts. A Genode capability refers to an RPC
      object or a signal context. In the context of NOVA, a capability refers to
      a NOVA kernel object. To avoid confusing both meanings of the term,
      Genode refers to NOVA's term as "capability selector", or simply
      "selector". A Genode signal context capability corresponds to a NOVA semaphore,
      all other Genode capabilities correspond to NOVA portals.
     

    
    
    PD service

     
      A PD session corresponds to a NOVA PD.
     

     
      A Genode capability being a NOVA portal has a
      defined IP and an associated local EC (the Genode entrypoint). The invocation
      of a such a Genode capability is an IDC call to a portal. A Genode capability is
      delegated by passing its corresponding portal or semaphore selector as IDC argument.
     

     
      Page faults are handled as explained in Section
      Page-fault handling on NOVA. Each memory mapping installed in a component
      implicitly triggers the allocation of a node in the kernel's mapping
      database.
     

    
    
    CPU service

     
      NOVA distinguishes between so-called global ECs and local ECs. A global EC can
      be equipped with CPU time by associating it with an SC. It can perform
      IDC calls but it cannot receive IDC calls. In contrast to a global EC,
      a local EC is able to receive IDC calls but it has no CPU time. A local
      EC is not executed before it is called by another EC.
     

     
      A regular Genode thread is a global EC. A Genode entrypoint is a local EC.
      Core distinguishes both cases based on the instruction-pointer (IP) argument
      of the CPU session's start function. For a local EC, the IP is set to zero.
     

    
    
    IO_MEM services

     
      Core's RAM and IO_MEM allocators are initialized based on the information found
      in NOVA's HIP.
     

    
    
    ROM service

     
      Core's ROM service provides all boot modules as ROM modules. Additionally,
      a copy of NOVA's HIP is provided as a ROM module named "hypervisor_info_page".
     

    
    
    IRQ service

     
      NOVA represents each interrupt as a semaphore created by the kernel. By
      registration of a Genode signal context capability via the sigh method of the
      Irq_session interface, the semaphore of the signal context capability is
      bound to the interrupt semaphore. Genode signals and NOVA semaphores are
      handled as described in Asynchronous notifications on NOVA.
     

     
      Upon the initial IRQ session's ack_irq call, a NOVA semaphore-down operation
      is issued within core on the interrupt semaphore, which implicitly unmasks the
      interrupt at the CPU. When the interrupt occurs, the kernel masks the interrupt
      at the CPU and performs the semaphore-up operation on the IRQ's semaphore.
      Thereby, the chained semaphore, which is the beforehand registered Genode
      signal context, is triggered and the interrupt is delivered as
      Genode signal. The interrupt gets acknowledged and unmasked by calling the
      IRQ session's ack_irq method.
     

   

   
   
   Page-fault handling on NOVA

   
    
     On NOVA, each EC has a pre-defined range of portal selectors.
     For each type of exception, the range has a dedicated portal that is entered in
     the event of an exception.
     The page-fault portal of a Genode thread is defined at the creation
     time of the thread and points to a pager EC per CPU within core. Hence,
     for each CPU, a pager EC in core pages all Genode threads running on the same
     CPU.
    

    
    
    The operation of pager ECs

     
      When an EC triggers a page fault, the faulting EC implicitly performs an
      IDC call to its pager. The IDC message contains the fault information.
      For resolving the page fault, core follows the procedure
      described in Page-fault handling. If the lookup for a dataspace within
      the faulter's region map succeeds, core establishes
      a memory mapping into the EC's PD by invoking the asynchronous map operation
      of the kernel and replies to the IDC message. In the case where the region lookup
      within the thread's corresponding region map fails, the faulted thread
      is retained in a blocked state via a kernel semaphore.
      In the event that the fault is later resolved by a region-map client
      as described in the paragraph "Region is empty" of Section
      Page-fault handling, the semaphore gets released, thus resuming the execution of
      the faulted thread. The faulter will immediately trigger another fault at the
      same address. This time, however, the region lookup succeeds.
     

    
    
    Mapping database

     
      NOVA tracks memory mappings in a data structure called mapping database
      and has the notion of the delegation of memory mappings (rather than the
      delegation of memory access). Memory access can be delegated only if the
      originator of the delegation has a mapping. Core is the only exception because
      it can establish mappings originating from the physical memory space.
      Because mappings can be delegated transitively between PDs, the mapping
      database is a tree where each node denotes the delegation of a mapping.
      The tree is maintained in order to enable the kernel to rescind the authority.
      When a mapping is revoked, the kernel implicitly cancels all transitive
      mappings that originated from the revoked node.
     

   

   
   
   Asynchronous notifications on NOVA

   
    
     To support asynchronous notifications as described in Section
     Asynchronous notifications, we extended the NOVA kernel semaphores to
     support signalling via chained NOVA semaphores. This extension enables the
     creation of kernel semaphores with a per-semaphore value, which can be bound to
     another kernel semaphore. Each bound semaphore corresponds to a Genode signal
     context. The per-semaphore value is used to distinguish different sources of
     signals.
    

    
     On this base platform, the blocking of the signal thread at the signal
     source is realized by using a kernel semaphore shared by the PD session
     and the PD client. All chained semaphores (Signal contexts) are bound to this
     semaphore. When first issuing a wait-for-signal operation
     at the signal source, the client requests a capability selector for the shared
     semaphore (repos/base-nova/include/signal_session/source_client.h). It then
     performs a down operation on this semaphore to block.
    

    
     If a signal sender issues a submit operation on a Genode signal
     capability, then a regular NOVA kernel semaphore-up syscall is used. If the
     kernel detects that the used semaphore is chained to another semaphore, the up
     operation is delegated to the one received during the initial wait-for-signal
     operation of the signal receiving thread.
    

    
     In contrast to other base platforms, Genode's signal API is supported by the
     kernel so that the propagation of signals does not require any interaction with
     core's PD service. However, the creation of signal contexts is arbitrated by
     the PD service.
    

   

   
   
   IOMMU support

   
    
     As discussed in Section Direct memory access (DMA) transactions, misbehaving
     device drivers may exploit DMA transactions to circumvent their component
     boundaries. When executing Genode on the NOVA microhypervisor, however,
     bus-master DMA is subjected to the IOMMU.
    

    
     The NOVA kernel
     applies a subset of the (MMU) address space of a protection domain
     to the (IOMMU) address space of a device. So the device's
     address space can be managed in the same way as one normally manages the address
     space of a PD. The only missing link is the assignment of device address
     spaces to PDs. This link is provided by the dedicated system
     call assign_pci that takes a PD capability selector and a device identifier as
     arguments. The PD capability selector represents the authorization over the
     protection domain, which is going to be targeted by DMA transactions.
     The device identifier is a virtual address where the extended PCI
     configuration space of the device is mapped in the specified PD.
     Only if a user-level device driver has access to the extended PCI
     configuration space of the device, is it able to get the assignment in place.
    

    
     To make NOVA's IOMMU support available to Genode,
     the ACPI driver has the ability to lookup the extended PCI configuration
     space region for all devices and reports it via a Genode ROM. The platform
     driver on x86 evaluates the reported ROM and uses the information to obtain
     transparently for platform clients (device drivers) the extended PCI
     configuration space per device. The platform driver uses a NOVA-specific
     extension (assign_pci) to the PD session interface to associate a PCI device
     with a protection domain.
    

    
     Even though these mechanisms combined should in theory
     suffice to let drivers operate with the IOMMU enabled, in practice, the
     situation is a bit more complicated. Because NOVA uses the same
     virtual-to-physical mappings for the device as it uses for the process, the DMA
     addresses the driver needs to supply to the device must be virtual addresses
     rather than physical addresses. Consequently, to be able to make a device
     driver usable on systems without IOMMU as well as on systems with IOMMU, the
     driver needs to become IOMMU-aware and distinguish both cases. This is an
     unfortunate consequence of the otherwise elegant mechanism provided by NOVA. To
     relieve the device drivers from worrying about both cases, Genode decouples
     the virtual address space of the device from the virtual address space of the
     driver. The former address space is represented by a Genode component called
     device PD. Its sole purpose
     is to hold mappings of DMA buffers that are accessible by the associated
     device. By using one-to-one physical-to-virtual mappings for those buffers
     within the device PD, each device PD contains a subset of the physical address
     space. The platform driver performs the assignment of device PDs to PCI
     devices. If a device driver intends to use DMA, it allocates a new DMA buffer
     for a specific PCI device at the platform driver.
     The platform driver responds to such a request by allocating a RAM dataspace at core,
     attaching it to the device PD using the dataspace's physical address as virtual
     address, and by handing out the dataspace capability to the client. If the driver
     requests the physical address of the dataspace, the address returned will be a
     valid virtual address in the associated device PD.
     This design implies that a device driver must allocate DMA buffers at the
     platform driver (specifying the PCI device the buffer is intended for) instead
     of using core's PD service to allocate buffers anonymously.
    

   

   
   
   Genode-specific modifications of the NOVA kernel

   
    
     NOVA is not ready to be used as a Genode base platform as is. This section
     compiles the modifications that were needed to meet the functional requirements of
     the framework. All modifications are maintained at the following
     repository:
    

    
     	Genode's version of NOVA

     	
      
       https://github.com/alex-ab/NOVA.git
      

     

    


    
     The repository contains a separate branch for each version of NOVA that has
     been used by Genode. When preparing the NOVA port using the port description
     at repos/base-nova/ports/nova.port, the NOVA branch that matches the used
     Genode version is checked out automatically. The port description refers to
     a specific commit ID. The commit history of each branch within the NOVA
     repository corresponds to the history of the original NOVA kernel
     followed by a series of Genode-specific commits. Each time NOVA is updated,
     a new branch is created and all Genode-specific commits are rebased on top of
     the history of the new NOVA version.
     This way, the differences between the original NOVA kernel and the Genode
     version remain clearly documented. The Genode-specific modifications solve the
     following problems:
    

    
     	Destruction of kernel objects

     	
      
       NOVA does not support the destruction of kernel objects. I.e., PDs and
       ECs can be created but not destroyed. With Genode being a dynamic system,
       kernel-object destruction is a mandatory feature.
      

     

     	Inter-processor IDC

     	
      
       On NOVA, only local ECs can receive IDC calls. Furthermore each local EC
       is bound to a particular CPU (hence the name "local EC"). Consequently,
       synchronous inter-component communication via IDC calls is possible only
       between ECs that both reside on the same CPU but can never cross CPU
       boundaries. Unfortunately, IDC is the only mechanism for the delegation
       of capabilities. Consequently, authority cannot be delegated between
       subsystems that reside on different CPUs. For Genode, this scheme is
       too rigid.
      

      
       Therefore, the Genode version of NOVA introduces inter-CPU IDC calls.
       When calling
       an EC on another CPU, the kernel creates a temporary EC and SC on the
       target CPU as a representative of the caller. The calling EC is blocked.
       The temporary EC uses the same UTCB as the calling EC. Thereby, the
       original IDC message is effectively transferred from one CPU to the other.
       The temporary EC then performs a local IDC to the destination EC using
       NOVA's existing IDC mechanism. Once the temporary EC receives the reply
       (with the reply message contained in the caller's UTCB), the kernel
       destroys the temporary EC and SC and unblocks the caller EC.
      

     

     	Support for priority-inheriting spinlocks

     	
      
       Genode's lock mechanism relies on a yielding spinlock for protecting the
       lock meta data. On most base platforms, there exists the invariant that
       all threads of one component share the same CPU priority. So priority
       inversion within a component cannot occur. NOVA breaks this invariant
       because the scheduling parameters (SC) are passed along IDC call chains.
       Consequently, when a client calls a server, the SCs of both client
       and server reside within the server. These SCs may have different
       priorities. The use of a naive spinlock for synchronization will produce
       priority inversion problems. The kernel has been extended with the
       mechanisms needed to support the implementation of
       priority-inheriting spinlocks in userland.
      

     

     	Combination of capability delegation and translation

     	
      
       As described in
       Section Capability delegation through capability invocation,
       there are two cases when a capability is specified as an RPC argument.
       The callee may already have a capability referring to the specified
       object identity. In this case, the callee expects to receive the corresponding
       local name of the object identity. In the other case, when the callee
       does not yet have a capability for the object identity, it obtains a new
       local name that refers to the delegated capability.
      

      
       NOVA does not support this mechanism per se.
       When specifying a capability selector as map item for an IDC call,
       the caller has to specify whether a new mapping should be created or
       the translation of the local names should be performed by the kernel.
       However, in the general case, this question is not decidable by the caller.
       Hence, NOVA had to be changed to take the decision depending on the
       existence of a valid translation for the specified capability selector.
      

     

     	Support for deferred page-fault resolution

     	
      
       With the original version of NOVA, the maximum number of threads is limited
       by core's stack area:
       NOVA's page-fault handling protocol works completely synchronously. When a
       page fault occurs, the faulting EC enters its page-fault portal and thereby
       activates the corresponding pager EC in core. If the pager's lookup for a
       matching dataspace within the faulter's region map succeeds, the page fault
       is resolved by delegating a memory mapping as the reply to the page-fault
       IDC call. However, if a page fault occurs on a managed dataspace, the pager
       cannot resolve it immediately. The resolution must be delayed until the
       region-map fault handler (outside of core) responds to the fault signal. In
       order to enable core to serve page faults of other threads in the meantime,
       each thread has its dedicated pager EC in core.
      

      
       Each pager EC, in turn, consumes a slot in the stack area within core. Since
       core's stack area is limited, the maximum number of ECs within core is
       limited too. Because one core EC is needed as pager for each thread outside
       of core, the available stacks within core become a limited resource
       shared by all CPU-session clients. Because each Genode component is a client
       of core's CPU service, this bounded resource is effectively shared among all
       components. Consequently, the allocation of threads on NOVA's version of
       core represents a possible covert storage channel.
      

      
       To avoid the downsides described above, we extended the NOVA IPC reply system
       call to specify an optional semaphore capability selector. The NOVA kernel
       validates the capability selector and blocks the faulting thread in the
       semaphore. The faulted thread remains blocked even after the pager has
       replied to the fault message. But the pager immediately becomes available for
       other page-fault requests. With this change, it suffices to maintain only
       one pager thread per CPU for all client threads.
      

      
       The benefits are manifold. First, the base-nova implementation converges
       more closely to other Genode base platforms. Second, core can not run out of
       threads anymore as the number of threads in core is fixed for a given setup.
       And the third benefit is that the helping mechanism of NOVA can be leveraged
       for concurrently faulting threads.
      

     

     	Remote revocation of memory mappings

     	
      
       In the original version of NOVA, roottask must retain mappings to all memory
       used throughout the system. In order to be able to delegate a mapping to
       another PD as response of a page fault, it must possess a local mapping
       of the physical page.
       Otherwise, it would not be able to revoke the mapping later on
       because the kernel expects roottask's mapping node as a proof of the
       authorization for the revocation of the mapping.
       Consequently, even though roottask never touches memory handed out to other
       components, it needs to have memory mappings with full access rights
       installed within its virtual address space.
      

      
       To relieve Genode's roottask (core) from the need to keep local mappings
       for all memory handed out to other components and thereby let core
       benefit from a sparsely populated address space as described in Section
       Sparsely populated core address space for base-hw, we changed the kernel's
       revoke operation to take a PD selector and a virtual address within the
       targeted PD as argument. By presenting the PD selector as a token of
       authorization over the entire PD, we do no longer need core-locally
       installed mappings as the proof of authorization. Hence, memory mappings can
       always be installed directly from the physical address space to the target
       PD.
      

     

     	Support for write-combined access to memory-mapped I/O resources

     	
      
       The original version of NOVA is not able to benefit from write combining
       because the kernel interface does not allow the userland to specify
       cacheability attributes for memory mappings. To achieve good throughput to
       the framebuffer, write combining is crucial. Hence, we extended the kernel
       interface to allow the userland to propagate cacheability attributes to the
       page-table entries of memory mappings and set up the x86 page attribute
       table (PAT) with a configuration for write combining.
      

     

     	Support for the virtualization of 64-bit guest operating systems

     	
      
       The original version of NOVA supports 32-bit guest operations only.
       We enhanced the kernel to also support 64-bit guests.
      

     

     	Resource quotas for kernel resources

     	
      
       The NOVA kernel lacks the ability to adopt the kernel memory pool to the
       behavior of the userland. The kernel memory pool has a fixed size, which
       cannot be changed at runtime. Even though we have not removed this
       principal limitation, we extended the kernel with the ability to
       subject kernel-memory allocations to a userlevel policy at the granularity
       of PDs. Each kernel operation that consumes kernel memory is accounted
       to a PD whereas each PD has a limited quota of kernel memory. This
       measure prevents arbitrary userland programs to bring down the entire
       system by exhausting the kernel memory. The reach of damage is limited to
       the respective PD.
      

     

     	Asynchronous notification mechanism

     	
      
       We extended the NOVA kernel semaphores to support signalling via chained
       NOVA semaphores. This extension enables the creation of kernel semaphores
       with a per-semaphore value, which can be bound to another kernel semaphore.
       Each bound semaphore corresponds to a Genode signal context. The
       per-semaphore value is used to distinguish different sources of signals. Now,
       a signal sender issues a submit operation on a Genode signal capability via a
       regular NOVA semaphore-up syscall. If the kernel detects that the used
       semaphore is chained to another semaphore, the up operation is delegated to
       the chained one. If a thread is blocked, it gets woken up directly and the
       per-semaphore value of the bound semaphore gets delivered. In case no thread
       is currently blocked, the signal is stored and delivered as soon as a thread
       issues the next semaphore-down operation.
      

      
       Chaining semaphores is an operation that is limited to a single level, which
       avoids attacks targeting endless loops in the kernel. The creation of such
       signals can solely be performed if the issuer has a NOVA PD capability with
       the semaphore-create permission set. On Genode, this effectively reserves the
       operation to core. Furthermore, our solution preserves the invariant of the
       original NOVA kernel that a thread may be blocked in only one semaphore at
       a time.
      

     

     	Interrupt delivery

     	
      
       We applied the same principle of the asynchronous notification extension
       to the delivery of interrupts by the NOVA kernel. Interrupts are delivered
       as ordinary Genode signals, which alleviate of the need for one thread per
       interrupt as required by the original NOVA kernel. The
       interrupt gets directly delivered to the address space of the driver
       in case of a Message Signalled Interrupt (MSI), or in case of a shared
       interrupt, to the x86 platform driver.
      

     

    


   

   
   
   Known limitations of NOVA

   
    
     This section summarizes the known limitations of NOVA and the NOVA version of
     core.
    

    
     	Fixed amount of kernel memory

     	
      
       NOVA allocates kernel objects out of a memory pool of a fixed size. The pool
       is dimensioned in the kernel's linker script
       nova/src/hypervisor.ld (at the symbol _mempool_f).
      

     

     	Bounded number of object capabilities within core

     	
      
       For each capability created via core's PD service,
       core allocates the corresponding NOVA portal or NOVA semaphore and maintains
       the capability selector
       during the lifetime of the associated object identity. Each allocation of
       a capability via core's PD service consumes one entry in core's capability
       space. Because the space is bounded, clients of the service could misuse
       core's capability space as covert storage channel.
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