

 Introduction

 We are surrounded by operating systems.
 Each device where multiple software functions are consolidated on a single
 CPU employs some sort of operating system that multiplexes the physical
 CPU for the different functions.
 In our age when even mundane household items get connected to the internet,
 it becomes increasingly hard to find devices where this is not the case.

 Our lives and our society depend on an increasing number of such devices.
 We have to trust them to fulfill their advertised functionality and
 to not perform actions that are against our interests. But are those devices
 trustworthy? In most cases, nobody knows that for sure. Even the device
 vendors are unable to guarantee the absence of vulnerabilities or hidden
 functions. This is not by malice. The employed commodity software stacks are
 simply too complex to reason about them.
 Software is universally known to be not perfect.
 So we have seemingly come to accept the common practice where vendors
 provide a stream of software and firmware updates that fix
 vulnerabilities once they become publicly known.
 Building moderately complex systems that are free from such issues appears to be
 unrealistic.
 Why is that?

 Universal truths

 The past decades have provided us with enough empirical evidence about
 the need to be pragmatic about operating-system software.
 For example,
 high-assurance systems are known to be expensive and struggle to scale.
 Consequently, under cost pressure, we can live without high assurance.
 Security is considered as important. But at the point where the user gets
 bothered by it, we have to be willing to compromise. Most users would agree that
 guaranteed quality of service is desirable. But to attain good utilization
 of cheap hardware, we have to sacrifice such guarantees.
 Those universal truths have formed our expectations of commodity
 operating system software.

 [image: img/assurance_vs_scalability]

 In markets where vendors are held liable for the correctness of their
 products, physical separation provides the highest assurance for the
 independence and protection of different functions from each other.
 For example, cars contain dozens of electronic control units (ECU) that
 can be individually evaluated and certified. However, cost considerations
 call for the consolidation of multiple functions on a single ECU.
 At this point, separation kernels are considered to partition the
 hardware resources into isolated compartments. Because the isolation is
 only as strong as the correctness of the isolation kernel, such kernels
 must undergo a thorough evaluation. In the face of being liable,
 an oversight during the evaluation may have disastrous consequences for the
 vendor. Each line of code to be evaluated is an expense. Hence, separation
 kernels are minimized to the lowest possible complexity - up to only a
 few thousand lines of code.

 The low complexity of separation kernels comes at the cost of being
 inflexible. Because the hardware resources are partitioned at
 system-integration time,
 dynamic workloads are hard to accommodate. The rigidity of the approach
 stands in the way whenever the number of partitions, the assignment of
 resources to partitions, and the software running in the partitions have to be
 changed at runtime.

 Even though the high level of assurance as provided by separation kernels is
 generally desirable, flexibility and the support for dynamic workloads is even
 more so. For this reason, commodity general-purpose OSes find their way into
 all kinds of devices except into those where vendors are held liable for the
 correctness of their products.
 The former include not only household appliances, network gear, consumer
 electronics, mobile devices, and certain comfort functions in vehicles but
 also the IT equipment of governments, smart-city appliances, and surveillance
 systems.
 To innovate quickly, vendors accept to make their products reliant
 on highly complex OS foundations. The trusted computing base (TCB) of all
 commodity general-purpose operating systems is measured in millions of
 lines of code. It comprises all the software components that must be trusted
 to not violate the interests of the user. This includes the kernel, the
 software executed at the system start, all background services with system
 privileges, and the actual application software.
 In contrast to separation kernels, any attempt to assess the correct functioning
 of the involved code is shallow at best. The trustworthiness of such a
 system remains uncertain to vendors and users alike.
 The uncertainty that comes with the staggering TCB complexity becomes a
 problem when such systems get connected to the internet:
 Is my internet router under control of a bot net? Is my mobile phone remotely
 manipulated to wiretap me? Is my TV spying on me when switched off? Are
 my sensitive documents stored on my computer prone to leakage?
 Faithfully, we hope the answers to those question to be no. But because
 it is impossible to reason about the trusted computing base of the employed
 operating systems, there are no answers.

 Apparently, the lack of assurance must be the price to pay for the
 accommodation of feature-rich dynamic workloads.

 [image: img/security_vs_ease_of_use]

 The ease of use of software systems is often perceived as diametrical to
 security. There are countless mundane examples: Remembering passwords
 of sufficient strength is annoying. Even more so is picking a dedicated
 password for each different purpose. Hence, users tend to become lax about
 choosing and updating passwords. Another example is OpenPGP. Because setting
 it up for secure email communication is perceived as complicated,
 business-sensitive information is routinely exchanged unencrypted. Yet another
 example is the lack of adoption of the security frameworks such as SELinux.
 Even though they are readily available on commodity OS distributions,
 comprehending and defining security policies is considered as a black art,
 which is better left to experts.

 How should an operating system strike the balance between being unusably
 secure and user-friendly insecure?

 [image: img/utilization_vs_accountability]

 Current-generation general-purpose OSes are designed to utilize physical
 resources like memory, network bandwidth, computation time, and power in the
 best way possible. The common approach to maximize utilization is the
 over-provisioning of resources to processes. The OS kernel
 pretends the availability of an unlimited amount of resources
 to each process in the hope that processes will attempt to allocate and
 utilize as much resources as possible. Its holistic view on all processes
 and physical resources
 puts the kernel in the ideal position to balance resources between processes.
 For example, if physical memory becomes scarce, the kernel is able to uphold
 the illusion of unlimited memory by temporarily swapping the memory content of
 inactive processes to disk.

 However, the optimization for high utilization comes at the price of
 indeterminism and effectively makes modern commodity OSes defenseless
 against denial-of-service attacks driven by applications.
 For example, because the network load is not accounted to individual
 network-using applications, a misbehaving network-heavy application is able
 to degrade the performance of other network applications. As another
 example, any GUI application is able to indirectly cause a huge memory
 consumption at the GUI server by creating an infinite amount of windows. If
 the system eventually runs out of memory, the kernel will identify the GUI
 server as the offender.

 With the help of complex heuristics like process-behaviour-aware schedulers,
 the kernel tries hard to uphold the illusion of unlimited resources when
 under pressure. But since the physical resources are ultimately limited, this
 abstraction is destined to break sooner or later. If it breaks, the
 consequences may be fatal: In an out-of-memory situation, the last resort
 of the kernel is to rampage and kill arbitrary processes.

 Can an operating system achieve high resource utilization while still being
 dependable?

 Clean-slate approach

 Surprisingly, by disregarding the practical considerations of existing
 commodity operating systems, the contradictions outlined above can be
 resolved by a combination of the following key techniques:

 	Microkernels

 	

 as a middle ground between separation kernels and
 monolithic kernels are able to accommodate dynamic workloads without
 unreasonably inflating the trusting computing base.

 	Capability-based security

 	

 supposedly makes security easy to use by
 providing an intuitive way to manage authority without the need for
 an all-encompassing and complex global system policy.

 	Kernelization

 	

 of software components aids the deconstruction of
 complex software into low-complexity security-sensitive parts and
 high-complexity parts. The latter no longer need to be considered
 as part of the trusted computing base.

 	Virtualization

 	

 can bridge the gap between applications that expect
 current-generation OSes and a new operating-system design.

 	The management of budgets

 	

 within hierarchical organizations shows how
 limited resources can be utilized and still be properly accounted for.

 None of those techniques is new by any means. However, they have never
 been used as a composition of a general-purpose operating system. This
 is where Genode comes into the picture.

 	

 [image: img/app_specific_tcb]

	
 Application-specific trusted computing base

 Application-specific trusted computing base

 A Genode system is structured as a tree of components where each component
 (except for the root of the tree) is owned by its parent. The notion of
 ownership means both responsibility and control. Being responsible for
 its children, the parent has to explicitly provide the resources needed by
 its children out of its own resources. It is also responsible to acquaint
 children with one another and the outside world. In
 return, the parent retains ultimate control over each of its children. As the
 owner of a child, it has ultimate power over the child's environment, the
 child's view of the system, and the lifetime of the child.
 Each child can, in turn, have children, which yields a recursive system
 structure. Figure img/app_specific_tcb illustrates the idea.

 At the root of the tree, there is a low-complexity microkernel that is
 always part of the TCB. The kernel is solely responsible to provide
 protection domains, threads of execution, and the controlled communication
 between protection domains. All other system functions such as device drivers,
 network stacks, file systems, runtime environments, virtual machines,
 security functions, and resource multiplexers are realized as components
 within the tree.

 The rigid organizational structure enables the system designer to
 tailor the trusted computing base for each component individually. For
 example, by hosting a cryptographic function nearby the root of the tree,
 the function is exposed only to the microkernel but not to complex drivers
 and protocol stacks that may exist in other branches of the tree. Figure
 img/app_specific_tcb illustrates the TCB of one leaf node. The TCB of the
 yellow component comprises the chain of parents and grandparents because it is
 directly or indirectly owned by them. Furthermore, the TCB comprises a
 service used by the component. But the right branch of tree is
 unrelated to the component and can thereby disregarded from the yellow
 component's TCB.

 Trading and tracking of physical resources

 Unlike traditional operating systems, Genode does not abstract from physical
 resources. Instead, each component has a budget of physical resources
 assigned by its parent. The budget allows the component to use the
 resources within the budget or to assign parts of its budget to its children.
 The usage and assignment of budgets is a deliberative decision by each
 component rather than a global policy of the OS kernel.
 Components are able to trade resource budgets along the branches
 of the tree. This way, components can offer services to other components
 without consuming their own resources. The dynamic trading of resource
 budgets between components allows for a high resource utilization without
 the over-provisioning of resources. Consequently, the system behavior
 remains deterministic at all times.

 Operating-system framework

 The Genode OS framework is the implementation of the Genode architecture.
 It is a tool kit for building highly secure
 special-purpose operating systems. It scales from embedded systems with as
 little as 4 MB of memory to highly dynamic general-purpose workloads.

 The system is based on a recursive structure. Each program is executed in a
 dedicated sandbox and gets granted only those access rights and resources that
 are required to fulfill its specific purpose. Programs can create and manage
 sub-sandboxes out of their own resources, thereby forming hierarchies where
 policies can be applied at each level. The framework provides mechanisms to
 let programs communicate with each other and trade their resources, but only
 in strictly-defined manners. Thanks to this rigid regime, the attack surface
 of security-critical functions can be reduced by orders of magnitude compared
 to contemporary operating systems.

 The framework aligns the construction principles of microkernels with Unix
 philosophy.
 In line with Unix philosophy, Genode is a collection of small building blocks,
 out of which sophisticated systems can be composed. But unlike Unix, those
 building blocks include not only applications but also all classical OS
 functionalities including kernels, device drivers, file systems, and protocol
 stacks.

 	CPU architectures

 	

 Genode supports the x86 (32 and 64 bit), ARM (32 bit), and RISC-V (64 bit)
 CPU architectures.
 On x86, modern architectural features such as IOMMUs and
 hardware virtualization can be utilized.
 On ARM, Genode is able to take advantage of TrustZone and virtualization
 technology.

 	Kernels

 	

 Genode can be deployed on a variety of different kernels including
 most members of the L4 family (NOVA, seL4, Fiasco.OC, OKL4 v2.1,
 L4ka::Pistachio, L4/Fiasco).
 Furthermore, it can be used on top of the Linux kernel to attain
 rapid development-test cycles during development.
 Additionally, the framework is accompanied with a custom microkernel that has
 been specifically developed for Genode and thereby further reduces the
 complexity of the trusted computing base compared to other kernels.

 	Virtualization

 	

 Genode supports virtualization at different levels:

 	

 On NOVA, faithful virtualization via VirtualBox allows the execution of
 unmodified guest operating systems as Genode subsystems. Alternatively,
 the Seoul virtual machine monitor can be used to run unmodified
 Linux-based guest OSes.

 	

 With Noux, there exists a runtime environment for Unix
 software such as GNU coreutils, bash, GCC, binutils, and findutils.

 	

 On ARM, Genode can be used as TrustZone monitor, or as a virtual machine
 monitor that facilitates ARM's virtualization extensions.

 	Building blocks

 	

 There exist hundreds of ready-to-use components such as

 	

 Device drivers for most common PC peripherals including networking,
 storage, display, USB, PS/2, Intel wireless, and audio output.

 	

 Device drivers for a variety of ARM-based SoCs such as Texas Instruments
 OMAP4, Samsung Exynos5, and FreeScale i.MX.

 	

 A GUI stack including a low-complexity GUI server, window management,
 and widget toolkits such as Qt5.

 	

 Networking components such as TCP/IP stacks and packet-level network
 services.

 Licensing and commercial support

 Genode is commercially supported by the German company Genode Labs GmbH, which
 offers trainings, development work under contract, developer support, and
 commercial licensing:

 	Genode Labs website

 	

 http://www.genode-labs.com

 The framework is available under two flavours of licences: an open-source
 license and commercial licensing.
 The primary license used for the distribution of the Genode OS framework is
 the GNU Affero General Public License Version 3 (AGPLv3). In short, the AGPLv3
 grants everybody the rights to

 	

 Use the Genode OS framework without paying any license fee,

 	

 Freely distribute the software,

 	

 Modify the source code and distribute modified versions of the software.

 In return, the AGPLv3 requires any modifications and derived work to be
 published under the same or a compatible license. For the full license
 text, refer to

 	GNU Affero General Public License Version 3

 	

 http://genode.org/about/LICENSE

 Note that the official license text accompanies the AGPLv3 with an additional
 clause that clarifies our consent to link Genode with all commonly established
 Open-Source licenses.

 For applications that require more permissive licensing conditions than
 granted by the AGPLv3, Genode Labs offers the option to commercially
 license the technology upon request. Please write to licensing@genode-labs.com.

 About this document

 This document is split into two parts. Whereas the first part contains the
 textual description of the architectural and practical foundations, the second
 part serves as a reference of the framework's programming interface. This
 allows the first part to stay largely clear from implementation details.
 Cross-references between both parts are used to connect the conceptual level
 with the implementation level.

 Chapter Getting started provides engineering-minded readers with
 a practical jump start to explore the code and experiment with it.
 These practical steps are good to get a first impression and will hopefully
 provide the motivation to engage with the core part of the book, which are
 the Chapters Architecture and Components.

 Chapter Architecture
 introduces Genode's high-level architecture by presenting the concept of
 capability-based security, the resource-trading mechanism, the root of the
 component tree, and the ways how components can collaborate without mutually
 trusting each other. Chapter Components narrows the view on different types
 of components, namely device drivers, protocol stacks, resource multiplexers,
 runtime environments, and applications. The remaining part of the chapter
 focuses on the composition of components.

 Chapter Development substantiates Chapter Getting started with all
 information needed to develop meaningful components. It covers the
 integration of 3rd-party software, the build system, the tool kit for
 automated testing, and the Git work flow of the regular Genode developers.

 Chapter System configuration addresses the system integration. After
 presenting Genode's holistic configuration concept, it details the usage of
 the init component, which bootstraps the static part of each Genode system.

 Chapter Under the hood closes the first part with a look behind the scenes.
 It provides the details and the rationales behind technical decisions,
 explains the startup procedure of components, shows how Genode's concepts are
 mapped to kernel mechanisms, and documents known limitations.

 The second part of the document gives an overview of the framework's
 C++ programming interface. The content is partially derived from the actual
 source code and supplemented with additional background information.

 Acknowledgements and feedback

 This document greatly benefited from the feedback of the community at the
 Genode mailing list, the wonderful team at Genode Labs, the thorough review
 by Adrian-Ken Rueegsegger and Reto Buerki, and several anonymous reviewers.
 Thanks to everyone who contributed to the effort, be it in the form of reviews,
 comments, moral support, or through projects commissioned to Genode Labs.

 That said, feedback from you as the reader of the document is always
 welcome. If you identify points you would like to see improved or
 if you spot grammatical errors, please do not hesitate to contact the
 author by writing to norman.feske@genode-labs.com or to post your feedback
 to the mailing list http://genode.org/community/mailing-lists.

 Getting started

 Genode can be approached from two different angles: as an operating-system
 architecture or as a practical tool kit. This chapter assists you with
 exploring Genode as the latter. After introducing the recommended
 development environment,
 it guides you through the steps needed to obtain the source code
 (Section Obtaining the source code), to use the tool chain
 (Section Using the build system), to test-drive system scenarios
 (Section A simple system scenario), and to create your first custom
 component from scratch (Section Hello world).

 Recommended development environment

 Genode is regularly used and developed on GNU/Linux. It is recommended to
 use the latest long-term support (LTS) version of Ubuntu. Make sure that your
 installation satisfies the following requirements:

 	

 GNU Make version 3.81 (or newer) needed by the build system,

 	

 libSDL-dev needed to run system scenarios directly on Linux,

 	

 tclsh and expect needed by test-automation and work-flow tools,

 	

 qemu, xorriso, parted, gdisk, and e2tools needed for running
 system scenarios on non-Linux platforms via the Qemu emulator.

 For using the entire collection of ported 3rd-party software, the following
 packages should be installed additionally:
 byacc, autoconf2.64, autogen, bison, flex, g++, git, gperf,
 libxml2-utils, subversion, and xsltproc.

 Seeking help

 The best way to get assistance while exploring Genode is to consult the
 mailing list, which is the primary communication medium of regular
 users and developers alike. Please feel welcome to join in!

 	Mailing Lists

 	

 http://genode.org/community/mailing-lists

 If you encounter a new bug, ambiguous documentation, or a missing feature,
 please consider opening a corresponding issue at the issue tracker:

 	Issue tracker

 	

 https://github.com/genodelabs/genode/issues

 Obtaining the source code

 The centerpiece of Genode is the source code found within the official Git
 repository:

 	Source code at GitHub

 	

 https://github.com/genodelabs/genode

 To obtain the source code, clone the Git repository:

 git clone https://github.com/genodelabs/genode.git

 After cloning, you can find the source code within
 the genode/ directory. In the following, we refer to this directory
 as <genode-dir>.

 Source-tree structure

 Top-level directory

 At the root of the directory tree, there is the following content:

 	doc/

 	

 Documentation in plain text format, including the
 release notes
 of all versions. Practical hint: The comprehensive release notes
 conserve most of the hands-on documentation aggregated over the lifetime
 of the project. When curious about a certain topic, it is often worthwhile to
 "grep" for the topic within the release notes to get a starting point
 for investigation.

 	tool/

 	

 Tools and scripts to support the build system, various boot loaders,
 the tool chain, and the management of 3rd-party source code. Please find
 more information in the README file contained in the subdirectory.

 	repos/

 	

 The so-called source-code repositories, which contain the actual
 source code of the framework components. The source code is not organized
 within a single source tree but multiple trees. Each tree is called a
 source-code repository and has the same principle structure.
 At build time, a set of source-code repositories can be selected to be
 incorporated into the build process. Thereby, the source-code repositories
 provide a coarse-grained modularization of the framework.

 Repositories overview

 The <genode-dir>/repos/ directory contains the following source-code
 repositories.

 	base/

 	

 The fundamental framework interfaces as well as the platform-agnostic parts
 of the core component (Section Core - the root of the component tree).

 	base-<platform>/

 	

 Platform-specific supplements of the base/ repository where <platform>
 corresponds to one of the following:

 	linux

 	

 Linux kernel (both x86_32 and x86_64).

 	nova

 	

 NOVA microhypervisor.
 More information about the NOVA platform is provided by Section
 Execution on the NOVA microhypervisor (base-nova).

 	hw

 	

 The hw platform allows the execution of Genode on bare hardware
 without the need for a separate kernel. The kernel functionality is
 included in the core component. It supports the ARM, 64-bit x86,
 and 64-bit RISC-V CPU architectures. The hw platform is also used as the
 basis for executing Genode on top of the Muen separation kernel.
 More information about the hw platform can be found in Section
 Execution on bare hardware (base-hw).

 	sel4

 	

 The seL4 microkernel developed by NICTA in Sydney. The support for this
 kernel is highly experimental.

 	foc

 	

 Fiasco.OC is a modernized version of the L4/Fiasco microkernel with a
 completely revised kernel interface fostering capability-based
 security.

 	okl4

 	

 OKL4 kernel originally developed at Open-Kernel-Labs.

 	pistachio

 	

 L4ka::Pistachio kernel developed at University of Karlsruhe.

 	fiasco

 	

 L4/Fiasco kernel originally developed at Technische Universität Dresden.

 	os/

 	

 OS components such as the init component, device drivers, and basic system
 services.

 	demo/

 	

 Various services and applications used for demonstration purposes, for
 example the graphical application launcher and the tutorial browser
 described in Section A simple system scenario can be found here.

 	hello_tutorial/

 	

 Tutorial for creating a simple client-server scenario. This
 repository includes documentation and the complete source code.

 	libports/

 	

 Ports of popular open-source libraries, most importantly the C library.
 Among the 3rd-party libraries are Qt5, libSDL, freetype, Python, ncurses,
 Mesa, and libav.

 	dde_linux/

 	

 Device-driver environment for executing Linux kernel subsystems as
 user-level components. Among the subsystems are the USB stack, the
 Intel wireless stack, and the TCP/IP stack.

 	dde_ipxe/

 	

 Device-driver environment for executing network drivers of the iPXE project.

 	dde_bsd/

 	

 Device-driver environment for audio drivers ported from OpenBSD.

 	dde_rump/

 	

 Port of rump kernels, which are used to execute subsystems of the NetBSD
 kernel as user-level components.
 The repository contains a server that uses a rump kernel to provide
 various NetBSD file systems.

 	ports/

 	

 Ports of 3rd-party applications.

 	gems/

 	

 Components that use
 both native Genode interfaces as well as features of other high-level
 repositories, in particular shared libraries provided by libports/.

 Using the build system

 Genode relies on a custom tool chain, which can be downloaded at the following
 website:

 	Tool chain

 	

 http://genode.org/download/tool-chain

 Build directory

 The build system never touches the source tree but generates object
 files, libraries, and programs in a dedicated build directory. We do not have a
 build directory yet. For a quick start, let us create one using the following
 command:

 cd <genode-dir>
 ./tool/create_builddir x86_64

 To follow the subsequent steps of test driving the Linux version of Genode,
 the specified platform argument should match your host OS installation. If
 you are using a 32-bit installation, specify x86_32 instead of x86_64.

 The command creates a new build directory at build/x86_64.

 Build configuration

 Before using the build directory, it is recommended to revisit and
 possibly adjust the build configuration, which is located in the
 etc/ subdirectory of the build directory, e.g., build/x86_64/etc/.
 The build.conf file contains global build parameters, in particular
 the selection of source-code repositories to be incorporated. It is also
 a suitable place for adding global build options. For example, for
 enabling GNU make to use 4 CPU cores, add the following line to the
 build.conf file:

 MAKE += -j4

 Building components

 The recipe for building a component has the form of a target.mk file
 within the src/ directory of one of the source-code repositories.
 For example, the target.mk file of the init component is located
 at <genode-dir>/repos/os/src/init/target.mk. To build the component, execute
 the following command from within the build directory:

 make init

 The argument "init" refers to the path relative to the src/ subdirectory.
 The build system determines and builds all targets found under this path in
 all source-code repositories.
 When the build the is finished, the resulting executable binary can be found
 in a subdirectory that matches the target's path. Additionally, the build
 system installs a symbolic link in the bin/ subdirectory that points to the
 executable binary.

 If the specified path contains multiple target.mk files in different
 subdirectories, the build system builds all of them. For example, the
 following command builds all targets found within one of the
 <repo>/src/drivers/ subdirectories:

 make drivers

 Furthermore, it is possible to specify multiple targets at once. The following
 command builds both the init component and the timer driver:

 make init drivers/timer

 A simple system scenario

 The build directory offers much more than an environment for building
 components. It supports the automation of system-integration work flows,
 which typically include the following steps:

 	

 Building a set of components,

 	

 Configuring the static part of a system scenario,

 	

 Assembling a boot directory with all ingredients needed by the scenario,

 	

 Creating a boot image that can be loaded onto the target platform,

 	

 Booting the target platform with the boot image,

 	

 Validating the behavior of the scenario.

 The recipe for such a sequence of steps can be expressed in the form of
 a so-called run script. Each run script represents a system scenario and
 entails all information required to reproduce the scenario. Run scripts can
 reside within the run/ subdirectory of any source-code repository.

 Genode comes with a ready-to-use run script showcasing simple graphical demo
 scenario. It is located at <genode-dir>/repos/os/run/demo.run and can
 be executed from within the build directory via:

 make run/demo KERNEL=linux

 In contrast to the building of individual components as described above,
 the integration of a complete system scenario requires us to select a
 particular OS kernel to use. The command instructs the build system to
 integrate and start the "run/demo" scenario on the Linux kernel.
 It will lookup a run script called demo.run in all repositories
 listed in etc/build.conf. It will eventually find the run script within
 the os/ repository. After completing the build of all components needed,
 the command will then automatically start the scenario.
 Because the build directory was created for the x86_64 platform and we
 specified "linux" as KERNEL, the scenario will be executed directly on the
 host system where each Genode component resides in a distinct Linux process.
 To explore the scenario, follow the instructions given by the graphical
 tutorial browser.

 The terminal where the makerun/demo command was issued displays the log
 output of the Genode system. To cancel the execution,
 hit control-c in the terminal.

 Targeting a microkernel

 Whereas the ability to run system scenarios on top of Linux allows for the
 convenient and rapid development of components and protocols, Genode is
 primarily designed for the use of microkernels. The choice of the microkernel
 to use is up to the user of the framework and may depend on various factors
 like the feature set, the supported hardware architectures, the license, or
 the development community. To execute the demo scenario directly on the NOVA
 microhypervisor, the following preparatory steps are needed:

 	

 Download the 3rd-party source code of the NOVA microhypervisor

 <genode-dir>/tool/ports/prepare_port nova

 The prepare_port tool downloads the source code of NOVA to a
 subdirectory at <genode-dir>/contrib/nova-<hash>/ where <hash>
 uniquely refers to the prepared version of NOVA.

 	

 On real hardware, the scenario needs a framebuffer driver. The VESA
 driver relies on a 3rd-party x86-emulation library in order to execute
 the VESA BIOS code. Download the 3rd-party source code of the x86emu
 library:

 <genode-dir>/tool/ports/prepare_port x86emu

 The source code will be downloaded to <genode-dir>/contrib/x86emu-<hash>/.

 	

 To boot the scenario as an operating system on a PC, a boot loader is
 needed. The build process produces a bootable disk or ISO image
 that includes the GRUB2 boot loader as well as a working boot-loader
 configuration. Download the boot loader as ingredient for the image-creation
 step.

 <genode-dir>/tool/ports/prepare_port grub2

 	

 Since NOVA supports the x86_64 architecture of our build directory, we
 can keep using the existing build directory that we just used for Linux.
 However, apart from enabling the parallelization of the build process as
 mentioned in Section Using the build system, we need to incorporate
 the libports source-code repository into the build process by uncommenting
 the corresponding line in the configuration. Otherwise the build system
 would fail to build the VESA driver, which resides within libports/.

 With those preparations in place, issue the execution of the demo run
 script from within the build directory:

 make run/demo KERNEL=nova

 This time, an instance of Qemu will be started to execute the demo scenario.
 The Qemu command-line arguments appear in the log output. As suggested
 by the arguments, the scenario is supplied to Qemu as an ISO image residing
 at var/run/demo.iso. This ISO image can not only be used with Qemu but
 also with a real machine. For example, creating a bootable USB stick with
 the system scenario is as simple as writing the ISO image onto an USB stick:

 sudo dd if=var/run/demo.iso of=/dev/<usb-device> bs=8M conv=fsync

 Note that <usb-device> refers to the device node of an USB stick. It can be
 determined using the dmesg command after plugging-in the USB stick.
 For booting from the USB stick, you may need to adjust the BIOS
 settings of the test machine accordingly.

 Hello world

 This section introduces the steps needed to create and execute a simple
 custom component that prints a hello-world message.

 Using a custom source-code repository

 In principle, it would be possible to add a new component to one of the
 existing source-code repositories found at <genode-dir>/repos/. However,
 unless the component is meant to be incorporated into upstream development
 of the Genode project, it is generally recommended to keep custom code
 separate from Genode's code base. This eases future updates to new versions
 of Genode and allows you to pick a revision-control system of your choice.

 The new repository must appear within the <genode-dir>/repos/ directory.
 This can be achieved by either hosting it as a subdirectory or by creating
 a symbolic link that points to an arbitrary location of your choice. For
 now, let us host a new source-code repository called "lab" directly within
 the repos/ directory.

 cd <genode-dir>
 mkdir repos/lab

 The lab repository will contain the source code and build rules for a
 single component as well as a run script for executing the component within
 Genode. Component source code reside in a src/ subdirectory. By convention,
 the src/ directory contains further subdirectories for hosting different
 types of components, in particular server (services and protocol stacks),
 drivers (hardware-device drivers), and app (applications). For the
 hello-world component, an appropriate location would be _src/app/hello/_:

 mkdir -p repos/lab/src/app/hello

 Source code and build description

 The hello/ directory contains both the source code and the build description
 of the component. The main part of each component typically resides in a
 file called main.cc. Hence, for a hello-world program, we have to create
 the repos/lab/src/app/hello/main.cc file with the following content:

 #include <base/component.h>
 #include <base/log.h>

 void Component::construct(Genode::Env
Genode OS Framework Foundations

 Architecture

 Contemporary operating systems are immensely complex to accommodate a
 large variety of applications on an ever diversifying spectrum of hardware
 platforms. Among the functionalities provided by a commodity operating system
 are device drivers, protocol stacks such as file systems and network
 protocols, the management of hardware resources, as well as the provisioning
 of security functions. The latter category is meant for protecting the
 confidentiality and integrity of information and the lifelines of critical
 functionality. For assessing the effectiveness of such a security function,
 two questions must be considered. First, what is the potential attack surface
 of the function? The answer to this question yields an assessment about the
 likelihood of a breach. Naturally, if there is a large number of potential
 attack vectors, the security function is at high risk. The second question is:
 What is the reach of a defect? If the compromised function has unlimited
 access to all information processed on the system, the privacy of all users
 may be affected. If the function is able to permanently install software, the
 system may become prone to back doors.

 Today's widely deployed operating systems do not isolate security-critical
 functions from the rest of the operating system. In contrary, they are
 co-located with most other operating-system functionality in a single
 high-complexity kernel. Thereby, those functions are exposed to the other
 parts of the operating system. The likelihood of a security breach is as
 high as the likelihood of bugs in an overly complex kernel. In other words:
 It is certain. Moreover, once an in-kernel function has been compromised, the
 defect has unlimited reach throughout the system.

 The Genode architecture was designed to give more assuring answers to the two
 questions stated. Each piece of functionality should be exposed to only those
 parts of the system, on which it ultimately depends. But it remains hidden
 from all unrelated parts. This minimizes the attack surface on individual
 security functions and thereby reduces the likelihood for a security breach.
 In the event that one part of the system gets compromised, the scope of the
 defect is limited to the particular fragment and its dependent parts.
 Unrelated functionalities remain unaffected. To realize this idea, Genode
 composes the system out of many components that interact with each other. Each
 component serves a specific role and uses well-defined interfaces to interact
 with its peers. For example, a network driver accesses a physical network card
 and provides a bidirectional stream of network packets to another component,
 which, in turn, may process the packets using a TCP/IP stack and a network
 application. Even though the network driver and the TCP/IP stack cooperate
 when processing network packets, they are living in separate protection
 domains. So a bug in one component cannot observe or corrupt the internal
 state of another.

 Such a component-based architecture, however, raises a number of questions,
 which are addressed throughout this chapter.
 Section Capability-based security explains how components can cooperate
 without inherently trusting each other.
 Section Recursive system structure answers the questions of who defines the
 relationship between components and how components become acquainted with each
 other.
 An operating system ultimately acts on physical hardware resources such
 as memory, CPUs, and peripheral devices.
 Section Core - the root of the component tree describes how such resources
 are made available to components.
 Section Component creation answers the question of how a new component comes
 to life.
 The variety of relationships between components and their respective
 interfaces call for different communication primitives. Section
 Inter-component communication introduces Genode's inter-component communication
 mechanisms in detail.

 Capability-based security

 This section introduces the nomenclature and the general model of Genode's
 capability-based security concept. The Genode OS framework is not tied to one
 kernel but supports a variety of kernels as base platforms. On each of those
 base platforms, Genode uses different kernel mechanisms to implement the
 general model as closely as possible. Note however that not all kernels
 satisfy the requirements that are needed to implement the model securely. For
 assessing the security of a Genode-based system, the respective
 platform-specific implementation must be considered. Sections
 Execution on bare hardware (base-hw) and
 Execution on the NOVA microhypervisor (base-nova)
 provide details for selected kernels.

 Capability spaces, object identities, and RPC objects

 Each component lives inside a protection domain that provides an isolated
 execution environment.

 [image: img/protection_domain]

 Genode provides an object-oriented way of letting components interact with
 each other. Analogously to object-oriented programming languages, which have
 the notion of objects and pointers to objects, Genode introduces the notion of
 RPC objects and capabilities to RPC objects.

 An RPC object provides a remote-procedure call (RPC) interface. Similar to a
 regular object, an RPC object can be constructed and accessed from within the
 same program. But in contrast to a regular object, it can also be called from
 the outside of the component. What a pointer is to a regular object, a
 capability is to an RPC object. It is a token that unambiguously refers to
 an RPC object. In the following, we represent an RPC object as follows.

 [image: img/rpc_object]

 The circle represents the capability associated with the RPC object. Like a
 pointer to an object, that can be used to call a function of the pointed-to
 object, a capability can be used to call functions of its corresponding RPC
 object. However, there are two important differences between a capability and
 a pointer. First, in contrast to a pointer that can be created out of thin air
 (e.g., by casting an arbitrary number to a pointer), a capability cannot be
 created without an RPC object. At the creation time of an RPC object, Genode
 creates a so-called object identity that represents the RPC object in the
 kernel. Figure img/object_identity illustrates the relationship of an
 RPC object and its object identity.

 	

 [image: img/object_identity]

	
 Relationship between an RPC object and its corresponding object identity.

 For each protection domain, the kernel maintains a so-called capability space,
 which is a name space that is local to the protection domain. At the creation time of
 an RPC object, the kernel creates a corresponding object identity and lets a
 slot in the protection domain's capability space refer to the RPC object's
 identity. From the component's point of view, the RPC object A has the name 3.
 When interacting with the kernel, the component can use this number to refer
 to the RPC object A.

 Delegation of authority and ownership

 	

 [image: img/delegation]

	
 The transitive delegation of a capability from one protection domain to others.

 The second difference between a pointer and a capability is that a capability
 can be passed to different components without losing its meaning. The transfer
 of a capability from one protection domain to another delegates the authority
 to use the capability to the receiving protection domain.
 This operation is called delegation and can be performed only by the kernel.
 Note that the originator of the delegation does not diminish its authority by
 delegating a capability. It merely shares its authority with the receiving
 protection domain.
 There is no superficial notion of access rights associated with a capability.
 The possession of a capability ultimately enables a protection domain to use
 it and to delegate it further. A capability should hence be understood as an
 access right.
 Figure img/delegation shows the
 delegation of the RPC object's capability to a second protection domain
 and a further delegation of the capability from the second to a third
 protection domain.
 Whenever the kernel delegates a capability from one to another protection domain,
 it inserts a reference to the RPC object's identity into a free slot of the
 target's capability space. Within protection domain 2 shown in Figure
 img/delegation, the RPC object can
 be referred to by the number 5. Within protection domain 3, the same RPC
 object is known as 2.
 Note that the capability delegation does not hand over the ownership of the
 object identity to the target protection domain. The ownership is always
 retained by the protection domain that created the RPC object.

 Only the owner of an RPC object is able to destroy it along with the
 corresponding object identity. Upon destruction of an object identity, the
 kernel removes all references to the vanishing object identity from all
 capability spaces. This effectively renders the RPC object inaccessible for
 all protection domains. Once the object identity for an RPC object is gone,
 the owner can destruct the actual RPC object.

 Capability invocation

 Capabilities enable components to call methods of RPC objects
 provided by different protection domains. A component that uses
 an RPC object plays the role of a client whereas a component that
 owns the RPC object acts in the role of a server. The interplay between
 client and server is very similar to a situation where a program calls
 a local function. The caller deposits the function arguments at a place where
 the callee will be able to pick them up and then passes control to the
 callee. When the callee takes over control, it obtains the function
 arguments, executes the function, copies the results to a place where the
 caller can pick them up, and finally hands back the control to the caller.
 In contrast to a program-local function call, however, client and server
 are different threads in their respective protection domains. The thread
 at the server side is called entrypoint denoting the fact that it
 becomes active only when a call from a client enters the protection domain
 or when an asynchronous notification comes in. Each component has at least one
 initial entrypoint, which is created as part of the component's execution
 environment.

 [image: img/entrypoint]

 The wiggly arrow denotes that the entrypoint is a thread. Besides being a
 thread that waits for incoming requests, the entrypoint is responsible for
 maintaining the association between RPC objects and their corresponding
 capabilities. The previous figures illustrated this association with the link
 between the RPC object and its capability. In order to become callable
 from the outside, an RPC object must be associated with a concrete entrypoint.
 This operation results in the creation of the object's identity and the
 corresponding capability. During the lifetime of the object identity, the
 entrypoint maintains the association between the RPC object and its capability in
 a data structure called object pool, which allows for looking up the
 matching RPC object for a given capability. Figure img/object_pool shows a
 scenario where two RPC objects are associated with one entrypoint in the
 protection domain of a server. The capability for the RPC object A has been
 delegated to a client.

 	

 [image: img/object_pool]

	
 The RPC object A and B are associated with the server's entrypoint. A client has a capability for A but not for B. For brevity, the kernel-protected object identities are not depicted. Instead, the dashed line between the capabilities shows that both capabilities refer to the same object identity.

 If a protection domain is in possession of a capability, each thread executed
 within this protection domain can issue a call to a member function of the RPC
 object that is referred to by the capability. Because this is not a normal
 function call but the invocation of an object located in a different
 protection domain, this operation has to be provided by the kernel. Figure
 img/capability_call illustrates the interaction of the client, the kernel,
 and the server. The kernel operation takes the client-local name of the
 invoked capability, the opcode of the called function, and the function
 arguments as parameters. Upon entering the kernel, the client's thread is
 blocked until it receives a response. The operation of the kernel is
 represented by the dotted line.
 The kernel uses the supplied local name as an
 index into the client's capability space to look up the object identity, to
 which the capability refers. Given the object identity, the kernel is able to
 determine the protection domain and the corresponding entrypoint that is
 associated with the object identity and wakes
 up the entrypoint's thread with information about the incoming request.
 Among this information is the server-local name of the capability that was
 invoked. Note that the kernel has translated the client-local name
 to the corresponding server-local name. The capability name spaces of client and
 server are entirely different. The entrypoint uses this number as a key into
 its object pool to find the locally implemented RPC object A that belongs to
 the invoked capability. It then performs a method call of the so-called
 dispatch function on the RPC object. The dispatch function maps the supplied
 function opcode to the matching member function and calls this function
 with the request arguments.

 	

 [image: img/capability_call]

	
 Control flow between client and server when the client calls a method of an RPC object.

 The member function may produce function results. Once the RPC object's member
 function returns, the entrypoint thread passes the function results to the
 kernel by performing the kernel's reply operation. At this point, the
 server's entrypoint becomes ready for the next request. The kernel, in turn,
 passes the function results as return values of the original call operation to
 the client and wakes up the client thread.

 Capability delegation through capability invocation

 Section Delegation of authority and ownership explained that capabilities
 can be delegated from one protection domain to another via a kernel operation.
 But it left open the question of how this procedure works. The answer is the use
 of capabilities as RPC message payload. Similar to how a caller of a regular
 function can pass a pointer as an argument, a client can pass a capability as
 an argument to an RPC call. In fact, passing capabilities as RPC arguments or
 results is synonymous to delegating authority between components.
 If the kernel encounters a capability as an argument of a call operation, it
 performs the steps illustrated in Figure img/capability_argument.

The local names are denoted as cap, e.g., cap_{arg}
is the local name of the object identity at the client side, and
$cap_{translated}$ is the local name of the same object identity at the
server side.
 	

 [image: img/capability_argument]

	
 Procedure of delegating a capability specified as RPC argument from a client to a server.

 	

 The kernel looks up the object identity in the capability space of the
 client. This lookup may fail if the client specified a number of an empty
 slot of its capability space. Only if the lookup succeeds is the kernel able
 to obtain the object identity referred to by the argument. Note that under
 no circumstances can the client refer to object identities, for which it
 has no authority because it can merely specify the object identities
 reachable through its capability space. For all non-empty slots of its
 capability space, the protection domain was authorized to use their
 referenced object identities by the means of prior delegations.
 If the lookup fails, the translation results in an invalid capability
 passed to the server.

 	

 Given the object identity of the argument, the kernel searches the server's
 capability space for a slot that refers to the object identity. Note that
 the term "search" does not necessarily refer to an expensive linear search.
 The efficiency of the operation largely depends on the kernel implementation.

 	

 If the server already possesses a capability to the object identity, the
 kernel translates the argument to the server-local name when passing
 it as part of the request to the server. If the server does not yet possess
 a capability to the argument, the kernel installs a new entry into the
 server's capability space. The new entry refers to the object identity of
 the argument. At this point, the authority over the object identity has been
 delegated from the client to the server.

 	

 The kernel passes the translated or just-created local name of the argument
 as part of the request to the server.

 Even though the above description covered the delegation of a single
 capability specified as argument, it is possible to delegate more than one
 capability with a single RPC call.
 Analogously to how capabilities can be delegated from a client to a server as
 arguments of an RPC call, capabilities can be delegated in the other direction
 as part of the reply of an RPC call. The procedure in the kernel is the same
 in both cases.

 Recursive system structure

 The previous section introduced capability delegation as the fundamental
 mechanism to share authority over RPC objects between protection domains. But
 in the given examples, the client was already in possession of a capability to
 the server's RPC object. This raises the question of how do clients get
 acquainted to servers?

 Component ownership

 In a Genode system, each component (except for the very first component called
 core) has a parent, which owns the component. The ownership relation between
 a parent and a child is two-fold.

 [image: img/parent_child]

 On the one hand, ownership stands for responsibility.
 Each component requires physical resources such as the memory
 or in-kernel data structures that represent the component in the
 kernel.
 The parent is responsible for providing a budget of those physical resources to
 the child at the child's creation time but also during the child's entire
 lifetime.
 As the parent has to assign a fraction of its own physical resources to its
 children, it is the parent's natural interest to maintain the balance of
 the physical resources split between itself and each of its children.
 Besides being the provider of resources, the parent defines all aspects of the
 child's execution and serves as the child's primary point of contact for
 seeking acquaintances with other components.

 	

 [image: img/parent_capability]

	
 Initial relationship between a parent and a newly created child.

 On the other hand, ownership stands for control. Because the parent has
 created its children out of its own resources, it is in the position to
 exercise ultimate power over its children. This includes the decision to
 destruct a child at any time in order to regain the resources that were assigned
 to the child. But it is also in control over the relationships of the child
 with other components known to the parent.

 Each new component is created as an empty protection domain. It is up to the
 parent to populate the protection domain with code and data, and to create a
 thread that executes the code within the protection domain. At creation time,
 the parent installs a single capability called parent capability into the
 new protection domain. The parent capability enables the child to perform RPC
 calls to the parent. The child is unaware of anything else that exists in the
 Genode system. It does not even know its own identity nor the identity of its
 parent. All it can do is issue calls to its parent using the parent
 capability. Figure img/parent_capability depicts the situation right after
 the creation of a child component. A thread in the parent component created a
 new protection domain and a thread residing in the protection domain. It also
 installed the parent capability referring to an RPC object provided by the
 parent. To provide the RPC object, the parent has to maintain an entrypoint.
 For brevity, entrypoints are not depicted in this and the following figures.
 Section Component creation covers the procedure of creating a component in
 detail.

 The ownership relation between parent and child implies that each component
 has to inherently trust its parent. From a child's perspective, its parent
 is as powerful as the kernel. Whereas the child has to trust its parent,
 a parent does not necessarily need to trust its children.

 Tree of components

 The parent-child relationship is not limited to a single level. Child
 components are free to use their resources to create further children, thereby
 forming a tree of components. Figure img/recursive_structure shows an
 example scenario. The init component creates subsystems according
 to its configuration. In the example, it created two children, namely
 a GUI and a launcher. The latter allows the user to interactively create
 further subsystems. In the example, launcher was used to start an application.

 	

 [image: img/recursive_structure]

	
 Example of a tree of components. The red arrow represents the ownership relation.

 At each position in the tree, the parent-child interface is the same. The
 position of a component within the tree is just a matter of composition. For
 example, by a mere configuration change of init, the application could be
 started directly by the init component and would thereby not be subjected to
 the launcher.

 Services and sessions

 The primary purpose of the parent interface is the establishment
 of communication channels between components. Any component can inform
 its parent about a service that it provides. In order to provide a service,
 a component needs to create an RPC object implementing the so-called
 root interface. The root interface offers functions for creating
 and destroying sessions of the service. Figure img/announce shows a
 scenario where the GUI component announces its service to the init component.
 The announce function takes the service name and the capability for the
 service's root interface as arguments. Thereby, the root capability is
 delegated from the GUI to init.

 	

 [image: img/announce]

	
 The GUI component announces its service to its parent using the parent interface.

 It is up to the parent to decide what to do with the announced information.
 The parent may ignore the announcement or remember that the child "GUI"
 provides a service "GUI". A component can announce any number of services via
 subsequent announce calls.

 	

 [image: img/session_request]

	
 The application requests a GUI session using the parent interface.

 The counterpart of the service announcement is the creation of a session by
 a client by issuing a session request to its parent. Figure
 img/session_request shows the scenario where the application requests a
 "GUI" session. Along with the session call, the client specifies the
 type of the service and a number of session arguments. The session arguments
 enable the client to inform the server about various properties of the
 desired session. In the example, the client informs the server that
 the client's window should be
 labeled with the name "browser". As a result of the session request, the
 client expects to obtain a capability to an RPC object that implements
 the session interface of the requested service. Such a capability is called
 session capability.

 When the parent receives a session request from a child, it is free to take
 a policy decision on how to respond to the request. This decision is closely
 related to the management of resources described in Section
 Trading memory between clients and servers.
 There are the following options.

 	Parent denies the service

 	

 The parent may deny the request and thereby prevent the child from using
 a particular service.

 	Parent provides the service

 	

 The parent could decide
 to implement the requested service by itself by handing out a session
 capability for a locally implemented RPC object to the child.

 	Server is another child

 	

 If the parent has received an announcement of the service from another
 child, it may decide to direct the session request to the other child.

 	Forward to grandparent

 	

 The parent may decide to request a session in the name of its child from
 its own parent.

 Figure img/session_request illustrates the latter option where the
 launcher responds to the application's session request by
 issuing a session request to its parent, the init component. Note that by
 requesting a session in the name of its child, the launcher is able to
 modify the session arguments according to its policy. In the example,
 the launcher imposes the use of a different label to the session. When
 init receives the session request from the launcher, it is up to init
 to take a policy decision with the same principle options. In fact, each
 component that sits in between the client and the server along the branches
 of the ownership tree can impose its policy onto sessions. The routing of the
 session request and the final session arguments as received by the server are
 the result of the successive application of all policies along the route.

 Because the GUI announced its "GUI" service beforehand, init is in possession
 of the root capability, which enables it to create and destroy GUI
 sessions. It decides to respond to the launcher's session request by
 triggering the GUI-session creation at the GUI component's root interface.
 The GUI component responds to this request with the creation of a new GUI
 session and attaches the received session arguments to the new session.
 The accumulated session policy is thereby tied to the session's RPC object.
 The RPC object is accompanied with its corresponding session capability,
 which is delegated along the entire call chain up to the originator of the
 session request (Section Delegation of authority and ownership). Once the
 application's session request returns, the application can interact directly
 with the GUI session using the session capability.

 	

 [image: img/session_root]

	
 Session creation at the server.

 The differentiation between session creation and session use aligns two
 seemingly conflicting goals with each other, namely efficiency and the
 application of the security policies by potentially many components.
 All components on the route between client and server are involved
 in the creation of the session and can thereby impose their policies on the
 session. Once established, the direct communication channel
 between client and server via the session capability allows for the efficient
 interaction between the two components. For the actual use of the session, the
 intermediate components are not on the performance-critical path.

 Client-server relationship

 Whereas the role of a component as a child is dictated by the strict
 ownership relation that implies that the child has to ultimately trust
 its parent, the role of a component as client or server is more diverse.

 In its role of a client that obtained a session capability as result of a
 session request from its parent, a component is unaware of the real identity
 of the server. It is unable to judge the trustworthiness of the server.
 However, it obtained the session from its parent, which the client ultimately
 trusts. Whichever session capability was handed out by the parent, the client
 is not in the position to question the parent's decision.

 Even though the integrity of the session capability can be taken for
 granted, the client does not need to trust the server in the same way as it
 trusts its parent. By invoking the capability, the client is in full control
 over the information it reveals to the server in the form of RPC arguments.
 The confidentiality and integrity of its internal state is protected.
 Furthermore, the
 invocation of a capability cannot have side effects on the client's protection
 domain other than the retrieval of RPC results. So the integrity of the
 client's internal state is protected. However, when invoking a capability, the
 client hands over the flow of execution to the server. The client is blocked
 until the server responds to the request. A misbehaving server may never
 respond and thereby block the client infinitely. Therefore, with respect to
 the liveliness of the client, the client has to trust the server. To empathize
 with the role of a component as a client, a capability invocation can be
 compared to the call of a function of an opaque 3rd-party library. When
 calling such a library function, the caller can never be certain to regain
 control. It just expects that a function returns at some point. However, in
 contrast to a call of a library function, a capability invocation does not put
 the integrity and confidentiality of the client's internal state at risk.

 Servers do not trust their clients

 When exercising the role of a server, a component should generally not trust
 its clients. On the contrary, from the server's perspective, clients should be
 expected to misbehave. This has two practical implications. First, a server is
 responsible for validating the arguments of incoming RPC requests. Second, a
 server should never make itself dependent on the good will of its clients.
 For example, a server should generally not invoke a capability obtained
 from one of its clients. A malicious client could have delegated a
 capability to a non-responding RPC object, which may block the server
 forever when invoked and thereby make the server unavailable for all
 clients. As another example, the server must always be in control
 over the physical memory resources used for a shared-memory interface between
 itself and its clients. Otherwise, if a client was in control over the
 used memory, it could revoke the memory from the server at any time, possibly
 triggering a fault at the server. The establishment of shared memory is
 described in detail in Section Shared memory.
 Similarly to the role as client, the internal state of a server is protected
 from its clients with respect to integrity and confidentiality.
 In contrast to a client, however, the liveliness of a server is protected as
 well. A server never needs to wait for any response from a client.
 By responding to an RPC request, the server does immediately become ready
 to accept the next RPC request without any prior handshake with the client
 of the first request.

 Ownership and lifetime of a session

 The object identity of a session RPC object and additional RPC objects
 that may have been created via the session is owned by the server. So
 the server is in control over the lifetime of those RPC objects.
 The client is not in the immediate
 position to dictate the server when to close a session because it has no power
 over the server. Instead, the procedure of closing a session follows the same
 chain of commands as involved in the session creation. The common parent of
 client and server plays the role of a broker, which is trusted by both
 parties. From the client's perspective, closing a session is a request to its
 parent. The client has to accept that the response to such a request is up to
 the policy of the parent.
 The closing of a session can alternatively be initiated by all nodes of the
 component tree that were involved in the session creation.

 From the perspective of a server that is implemented by a child, the request
 to close a session originates from its parent, which, as the owner of the
 server, represents an authority that must be ultimately obeyed.
 If the server complies,
 the object identity of the session's RPC object vanishes. Since the kernel
 invalidates capabilities once their associated RPC object is destroyed,
 all capabilities referring to the RPC object - however delegated - are
 implicitly revoked as a side effect.
 Still, a server may ignore the session-close request. In this case, the parent
 of a server might take steps to enforce its will by destructing the server
 altogether.

 Trustworthiness of servers

 Servers that are shared by clients of different security levels must be
 designed and implemented with special care. Besides the correct response to
 session-close requests, another consideration is the adherence to the security
 policy as configured by the parent. The mere fact that a server is a child of
 its parent does not imply that the parent won't need to trust it in some
 respects.

 In cases where is not viable to trust the server (e.g., because the
 server is based on ported software that is too complex for thorough
 evaluation), certain security properties such as the effectiveness of
 closing sessions could be enforced by a small (and thereby trustworthy)
 intermediate server that sits in-between the real server and the client.
 This intermediate server would then effectively wrap the server's
 session interface.

 Resource trading

 As introduced in Section Component ownership, child components are created
 out of the resources of their respective parent components. This section
 describes the underlying mechanism. It first introduces the concept of
 PD sessions as resource accounts in Section Resource assignment.
 Section Trading memory between clients and servers
 explains how PD sessions are used to trade resources between components.
 The resource-trading mechanism ultimately allows servers to become resilient
 against client-driven resource-exhaustion attacks. However, such servers need
 to take special precautions that are explained in Section
 Component-local heap partitioning.
 Section Dynamic resource balancing presents a mechanism for the dynamic
 balancing of resources among cooperative components.

 Resource assignment

 In general, it is the operating system's job to manage the physical resources
 of the machine in a way that enables multiple applications to utilize them in
 a safe and efficient manner. The physical resources are foremost the physical
 memory, the processing time of the CPUs, and devices.

 The traditional approach to resource management

 Traditional operating systems usually provide abstractions of physical resources
 to applications running on top of the operating system. For example, instead
 of exposing the real interface of a device to an application, a Unix kernel
 provides a representation of the device as a pseudo file in the virtual file
 system. An application interacts with the device indirectly by operating on
 the respective pseudo file via a device-class-specific API (ioctl
 operations). As another example, a traditional OS kernel provides each
 application with an arbitrary amount of virtual memory, which may be much
 larger than the available physical memory. The application's virtual memory is
 backed with physical memory not before the application actually uses the
 memory. The pretension of unlimited memory by the kernel relieves application
 developers from considering memory as a limited resource. On the other hand,
 this convenient abstraction creates problems that are extremely hard or even
 impossible to solve by the OS kernel.

 	

 The amount of physical memory that is at the disposal for backing
 virtual memory is limited. Traditional OS kernels employ strategies
 to uphold the illusion of unlimited memory by swapping memory pages to disk.
 However, the swap space on disk is ultimately limited, too. At one point,
 when the physical resources are exhausted, the pretension of unlimited
 memory becomes a leaky abstraction and forces the kernel to take extreme
 decisions such as killing arbitrary processes to free up physical memory.

 	

 Multiple applications including critical applications as well as
 potentially misbehaving applications share one pool of physical resources.
 In the presence of a misbehaving application that exhausts the physical
 memory, all applications are equally put at risk.

 	

 Third, by granting each application the legitimate ability to consume as
 much memory as the application desires, applications cannot be held
 accountable for their consumption of physical memory. The kernel cannot
 distinguish a misbehaving from a well-behaving memory-demanding application.

 There are several approaches to relieve those problems. For example, OS
 kernels that are optimized for resource utilization may employ heuristics that
 take the application behavior into account for parametrizing page-swapping
 strategies. Another example is the provisioning of a facility for pinned
 memory to applications. Such memory is guaranteed to be backed by physical
 memory. But such a facility bears the risk of allowing any application to
 exhaust physical memory directly. Hence, further heuristics are needed to
 limit the amount of pinned memory an application may use. Those counter
 measures and heuristics, while making the OS kernel more complex, are mere
 attempts to fight symptoms but unable to solve the actual problems caused by
 the lack of accounting. The behavior of such systems remains largely
 indeterministic.

 As a further consequence of the abstraction from physical resources, the
 kernel has to entail functionality to support the abstraction. For example,
 for swapping memory pages to disk, the kernel has to depend on an in-kernel
 disk driver. For each application, whether or not it ever touches the disk,
 the in-kernel disk driver is part of its trusted computing base.

 PD sessions and balances

 Genode does not abstract from physical resources. Instead, it solely
 arbitrates the access to such resources and provides means to delegate the
 authority over resources between components.
 Low-level physical resources are represented as services
 provided by the core component at the root of the component tree.
 The core component is described in detail in Section
 Core - the root of the component tree.
 The following description focuses on memory as the most prominent low-level
 resource managed by the operating system. Processing time is subject
 to the kernel's scheduling policy whereas the management of the higher-level
 resources such as disk space is left to the respective servers that provide
 those resources.

 Physical memory is handed out and accounted by the PD service of core. The best
 way to describe the idea is to draw an analogy between the PD service and a bank.
 Each PD session corresponds to a bank account. Initially, when opening
 a new account, there is no balance. However, by having the authority over
 an existing bank account with a balance, one can transfer funds from the
 existing account to the new account.
 Naturally, such a transaction will decrease the balance of the
 originating account. Internally at the bank, the transfer does not involve any
 physical bank notes. The transaction is merely a change of balances of both
 bank accounts involved.
 A bank customer with the authority over a given
 bank account can use the value stored on the bank account to purchase physical
 goods while withdrawing the costs from the account.
 Such a withdrawal will naturally decrease the balance on the account. If the
 account is depleted, the bank denies the purchase attempt.
 Analogously to purchasing physical goods by withdrawing balances from a bank
 account, physical memory can be allocated from a PD session. The balance
 of the PD session is the PD session's quota.
 A piece of allocated physical memory is represented by a so-called dataspace
 (see Section Dataspaces for more details). A RAM dataspace is a container
 of physical memory that can be used for storing data.

 Subdivision of budgets

 Similar to a person with a bank account, each component of a Genode system
 has a session at core's PD service.
 At boot time, the core component creates an initial PD session with the balance
 set to the amount of available physical memory. This PD session is designated
 for the init component, which is the first and only child of core.
 On request by init, core delegates the capability for this initial PD session
 to the init component.

 	

 [image: img/memory_assignment]

	
 Init assigns a portion of its memory to a child. In addition to its own PD session (2), init has created a second PD session (3) designated for its child.

 For each child component spawned by the init component, init creates a new
 PD session at core. Figure img/memory_assignment exemplifies this
 step for one child. As the result from the session creation, it obtains the
 capability for the new PD session. Because it has the authority over both
 its own and the child's designated PD session, it can transfer a certain
 amount of RAM quota from its own account to the child's account by invoking
 its own PD-session capability and specifying the beneficiary's PD-session
 capability as argument. Core responds to the request by atomically adjusting
 the quotas of both PD sessions by the specified amount.
 In the case of init, the amount depends on init's
 configuration. Thereby, init explicitly splits its
 own RAM budget among its child components. Each child created by init can
 obtain the capability for its own PD session from init via the parent
 interface and thereby gains the authority over the memory budget that was
 assigned to it.
 Note however, that no child has the authority over init's PD session nor
 the PD sessions of any siblings. The mechanism for distributing a given
 budget among multiple children works recursively. The children of init
 can follow the same procedure to further subdivide their budgets for
 spawning grandchildren.

 Protection against resource stealing

 	

 [image: img/resource_stealing]

	
 Memory-stealing attempt

 A parent that created a child subsystem out of its own memory resources,
 expects to regain the spent resources when destructing the subsystem. For
 this reason, it must not be possible for a child to transfer funds to
 another branch of the component tree without the consent of the parent.
 Figure img/resource_stealing illustrates an example scenario that
 violates this expectation.
 The client and server components conspire to
 steal memory from the child. The client was created by the child and
 received a portion of the child's memory budget. The client requested
 a session for a service that was eventually routed to the server.
 The client-server relationship allows the client to delegate capabilities
 to the server. Therefore, it is able to delegate its own PD session
 capability to the server.
 The server, now in possession of the client's and its own PD session
 capabilities, can transfer memory from the client's to its own PD session.
 After this transaction,
 the child has no way to regain its memory resources because it has no
 authority over the server's PD session.

 To prevent such resource-stealing scenarios, Genode restricts the quota
 transfer between arbitrary PD sessions. Each PD session must have a
 reference PD session, which can be defined only once. Transfers are
 permitted only between a PD session and its reference PD session.
 When creating the PD session of a child component, the parent registers
 its own PD session as the child's reference PD session. This way, the
 parent becomes able to transfer budgets between its own and
 the child's PD session.

 PD session destruction

 When a PD session is closed, core destroys all dataspaces that were
 allocated from the PD session and transfers the PD session's final budget
 to the corresponding reference PD session.

 Trading memory between clients and servers

 An initial assignment of memory to a child is not always practical because
 the memory demand of a given component may be unknown at its construction
 time. For example, the memory needed by a GUI server over its lifetime
 is not known a priori but depends on the number of its clients, the number
 of windows on screen, or the amount of pixels that must be held at the
 server. In many cases, the memory usage of a server depends on the
 behavior of its clients. In traditional operating systems, system services
 like a GUI server would allocate memory on behalf of its clients. Even though
 the allocation was induced by a client, the server performs the allocation.
 The OS kernel remains unaware of the fact that the server solely needs the
 allocated memory for serving its client. In the presence of a misbehaving
 client that issues an infinite amount of requests to the server where each
 request triggers a server-side allocation (for example the creation of a new
 window), the kernel will observe the server as a resource hog. Under
 resource pressure, it will likely select the server to be punished.
 Each server that performs allocations on behalf of its clients is prone to
 this kind of attack. Genode solves this problem by letting clients pay for
 server-side allocations. Client and server may be arbitrary nodes in
 the component tree.

 Session quotas

 As described in the previous section, at the creation time of a child, the
 parent assigns a part of its own memory quota to the new child. Since the
 parent retains the PD-session capabilities of all its children, it can issue
 further quota transfers back and forth between the children's PD sessions
 and its own PD session, which represents the reference account for all children.
 When a child requests a session at the parent interface, it can attach a
 fraction of its quota to the new session by specifying an amount of memory to
 be donated to the server as a session argument. This amount is called
 session quota. The session quota can be used by the server during the
 lifetime of the session. It is returned to the client when the session is
 closed.

 When receiving a session request, the parent has to distinguish three different
 cases depending on its session-routing decision as described in Section
 Services and sessions.

 	Parent provides the service

 	

 If the parent provides the requested service by itself, it first checks
 whether the session quota meets its need for providing the service. If so,
 it transfers the session quota from the requesting child's PD session to
 its own PD session. This step may fail if the child offered a session quota
 larger than the available quota in the child's PD session.

 	Server is another child

 	

 If the parent decides to route the session request to another child, it
 transfers the session quota from the client's PD session to the server's
 PD session. Because the PD sessions are not related to each other as
 both have the parent's PD session as reference account, this transfer
 from the client to the server consists of two steps. First, the parent
 transfers the session quota to its own PD session. If this step succeeded,
 it transfers the session quota from its own PD session to the server's PD
 session. The parent keeps track of the session quota for each session so
 that the quota transfers can be reverted later when closing the session. Not
 before the transfer of the session quota to the server's PD session
 succeeded, the parent issues the actual session request at the server's root
 interface along with the information about the transferred session quota.

 	Forward to grandparent

 	

 The parent may decide to forward the session request to its own parent. In
 this case, the parent requests a session on behalf of its child. The
 grandparent neither knows nor cares about the actual origin of the request
 and will simply decrease the memory quota of the parent. For this reason,
 the parent transfers the session quota from the requesting child to its own
 PD session before issuing the session request at the grandparent.

 Quota transfers may fail if there is not enough budget on the originating
 account. In this case, the parent aborts the session creation and reflects
 the lack of resources as an error to the originator of the session
 request.

 This procedure works recursively. Once the server receives the session request
 along with the information about the provided session quota, it can use this
 information to decide whether or not to provide the session under these
 resource conditions. It can also use the information to tailor the quality of
 the service according to the provided session quota. For example, a larger
 session quota might enable the server to use larger caches or communication
 buffers for the client's session.

 Session upgrades

 During the lifetime of a session, the initial session quota may turn out to be
 too scarce. Usually, the server returns such a scarcity condition as an
 error of operations that imply server-side allocations.
 The client may handle such a condition by upgrading the session quota of an
 existing session by issuing an upgrade request to its parent along with
 the targeted session capability and the additional session quota. The
 upgrade works analogously to the session creation. The server will
 receive the information about the upgrade via the root interface of the
 service.

 Closing sessions

 If a child issues a session-close request to its parent, the parent determines
 the corresponding server, which, depending on the
 route of the original session request, may be locally implemented, provided by
 another child, or provided by the grandparent. Once the server receives the
 session-close request, it is responsible for releasing all resources that were
 allocated from the session quota. The release of resources should revert
 all allocations the server has performed on behalf its client. Stressing the
 analogy with the bank account, the server has to sell the physical goods
 (i.e., RAM dataspaces) it purchased from the client's session quota to restore
 the balance on its PD session.
 After the server has reverted all session-specific allocations, the server's
 PD session is expected to have at least as much available budget as the
 session quota of the to-be-closed session. As a result, the session quota can
 be transferred back to the client.

 However, a misbehaving server may fail to release those resources by malice
 or because of a bug. For example, the server may be unable to free a dataspace
 because it mistakenly used the dataspace for another client's data.
 Another example would be a memory leak in the server.
 Such misbehavior is detected on the attempt to withdraw the session
 quota from the server's PD session. If the server's available RAM quota after
 closing a session remains lower than the session quota, the server apparently
 peculated memory.
 If the misbehaving server was locally provided by the
 parent, it has the full authority to not hand back the session quota to its
 child. If the misbehaving service was provided by the grandparent, the parent
 (and its whole subsystem) has to subordinate. If, however, the server was
 provided by another child and the child refuses to release resources, the
 parent's attempt to withdraw the session quota from the server's PD session
 will fail.
 It is up to the policy of the parent to handle such a failure either by
 punishing the server (e.g., killing the component) or by granting more of its
 own quota. Generally, misbehavior is against the server's own interests. A
 server's best interest is to obey the parent's close request to avoid
 intervention.

 Component-local heap partitioning

 Components that perform memory allocations on behalf of untrusted parties
 must take special precautions for the component-local memory
 management.
 There are two prominent examples for such components.
 As discussed in Section Trading memory between clients and servers, a
 server may be used by multiple clients that must not interfere with
 each other. Therefore, server-side memory allocations on behalf of a
 particular client must strictly be accounted to the client's session quota.
 Second, a parent with multiple children may need to allocate memory to
 perform the book keeping for the individual children, for example,
 maintaining the information about their open sessions and their
 session quotas. The parent should account those child-specific allocations
 to the respective children. In both cases, it is not sufficient to merely
 keep track of the amount of memory consumed on behalf of each untrusted party
 but the actual allocations must be performed on independent backing stores.

 	

 [image: img/anonymous_heap]

	
 A server allocates anonymous memory on behalf of multiple clients from a single heap.

 Figure img/anonymous_heap shows a scenario where a server performs
 anonymous memory allocations on behalf of two session. The memory is allocated
 from the server's heap. Whereas allocations from the heap are of byte
 granularity, the heap's backing store consists of several dataspaces. Those
 dataspaces are allocated from the server's PD session as needed but at a much
 larger granularity. As depicted in the figure, allocations from both sessions
 end up in the same dataspaces. This becomes a problem once one session is
 closed. As described in the previous section, the server's parent expects the
 server to release all resources that were allocated from the corresponding
 session quota. However, even if the server reverts all heap allocations that
 belong to the to-be-closed session, the server could still not release the
 underlying backing store because all dataspaces are still occupied with memory
 objects of another session. Therefore, the server becomes unable to comply
 with the parent's expectation.

 	

 [image: img/heap_partitions]

	
 A server performs memory allocations from session-specific heap partitions.

 The solution of this problem is illustrated in Figure img/heap_partitions.
 For each session, the server maintains a separate heap partition. Each
 memory allocation on behalf of a client is performed from the session-specific
 heap partition rather than from a global heap. This way, memory objects of
 different sessions populate disjoint dataspaces. When closing a session,
 the server reverts all memory allocations from the session's heap. After
 freeing the session's memory objects, the heap partition becomes empty. So it
 can be destroyed. By destroying the heap partition, the underlying dataspaces
 that were used as the backing store can be properly released.

 Dynamic resource balancing

 As described in Section Resource assignment, parent components explicitly
 assign physical resource budgets to their children. Once assigned, the
 budget is at the disposal of the respective child subsystem until the
 subsystem gets destroyed by the parent.

 However, not all components have well-defined resource demands. For example, a
 block cache should utilize as much memory as possible unless the memory is
 needed by another component. The assignment of fixed amount of memory to such
 a block cache cannot accommodate changes of workloads over the potentially
 long lifetime of the component. If dimensioned too small, there may be a lot
 of slack memory remaining unutilized. If dimensioned too large, the block
 cache would prevent other and possibly more important components to use the
 memory. A better alternative is to enable a component to adapt its resource
 use to the resource constraints of its parent. The parent interface supports
 this alternative with a protocol for the dynamic balancing of resources.

 The resource-balancing protocol uses a combination of synchronous
 remote procedure calls and asynchronous notifications. Both mechanisms
 are described in Section Inter-component communication. The child
 uses remote procedure calls to talk to its parent whereas the parent
 uses asynchronous notifications to signal state changes to the child.
 The protocol consists of two parts, which are complementary.

 Resource requests

 By issuing a resource request to its parent, a child applies for an upgrade
 of its resources. The request takes the amount of desired resources as
 argument. A child would issue such a request if it detects scarceness of
 resources. A resource request returns immediately regardless of whether
 additional resources have been granted or not. The child may proceed working
 under the low resource conditions or it may block and wait for a
 resource-available signal from its parent.
 The parent may respond to this request in different ways. It
 may just ignore the request, possibly stalling the child. Alternatively,
 it may immediately transfer additional quota to the child's PD session.
 Or it may take further actions to free up resources to accommodate the child.
 Those actions may involve long-taking operations such as the destruction
 of subsystems or the further propagation of resource request towards the
 root of the component tree.
 Once the parent has freed up enough resources to accommodate the child's
 request, it transfers the new resources to the child's PD session and
 notifies the child by sending a resource-available signal.

 Yield requests

 The second part of the protocol enables the parent to express its wish for
 regaining resources. The parent notifies the child about this condition by
 sending a yield signal to the child. On the reception of such a signal, the
 child picks up the so-called yield request at the parent using a remote
 procedure call. The yield request contains the amount of resources the parent
 wishes to regain. It is up to the child to comply with a yield request or not.
 Some subsystems have meaningful ways to respond to yield requests. For
 example, an in-memory block cache could write back the cached information and
 release the memory consumed by the cache. Once the child has succeeded in
 freeing up resources, it reports to the parent by issuing a so-called yield
 response via a remote procedure call to the parent. The parent may respond to
 a yield response by withdrawing resources from the child's PD session.

 Core - the root of the component tree

 Core is the first user-level component, which is directly created by the
 kernel. It thereby represents the root of the component tree.
 It has access to the raw physical resources such as memory, CPUs,
 memory-mapped devices, interrupts, I/O ports, and boot modules.
 Core exposes those low-level resources as services so that they
 can be used by other components. For example, physical memory is made
 available as so-called RAM dataspaces allocated from core's PD service,
 interrupts are represented by the IRQ service, and CPUs are
 represented by the CPU service. In order to access a resource, a component
 has to establish a session to the corresponding service. Thereby the
 access to physical resources is subjected to the routing of session requests
 as explained in Section Services and sessions. Moreover, the
 resource-trading concept described in Section
 Trading memory between clients and servers applies to core services in
 the same way as for any other service.

 In addition to making hardware resources available as services, core
 provides all prerequisites to bootstrap the component tree.
 These prerequisites comprise services for creating protection domains,
 for managing address-space layouts, and for creating object identities.

 Core is almost free from policy. There are no configuration options.
 The only policy of core is the startup of the init component, to which core
 grants all available resources. Init, in turn, uses those resources to
 spawn further components according to its configuration.

 Section Dataspaces introduces dataspaces as containers of memory or
 memory-like resources. Dataspaces form the foundation for most of the core
 services described in the subsequent sections.
 The section is followed by the introduction of each individual service
 provided by core. In the following, a component that has established a
 session to such a service is called client. For example, a component that
 obtained a session to core's CPU service is a CPU client.

 Dataspaces

 A dataspace is an RPC object1 that resides in core and represents a contiguous
 physical address-space region with an arbitrary size. Its base address and
 size are subjected to the granularity of physical pages as dictated by the
 memory-management unit (MMU) hardware. Typically the granularity is 4 KiB.

 Dataspaces are created and managed via core's services.
 Because each dataspace is a distinct RPC object, the authority over the
 contained physical address range is represented by a capability and can
 thereby be delegated between components.
 Each component in possession of a dataspace capability can make the
 dataspace content visible in its local address space.
 Hence, by the means of
 delegating dataspace capabilities, components can establish shared memory.

 On Genode, only core deals with physical memory pages. All other components
 use dataspaces as a uniform abstraction for memory, memory-mapped I/O
 regions, and ROM modules.

 Region maps

 A region map1 represents the layout of a virtual address
 space. The size of the virtual address space is defined at its creation
 time. Region maps are created implicitly as part of a PD session (Section
 Protection domains (PD)) or
 manually via the RM service (Section Region-map management (RM)).

 Populating an address space

 The concept behind region maps is a generalization of the MMU's page-table
 mechanism. Analogously to how a page table is populated with physical page
 frames, a region map is populated with dataspaces.
 Under the hood, core uses the MMU's page-table mechanism as a cache for
 region maps.
 The exact way of how MMU translations are installed depends on the
 underlying kernel and is opaque to Genode components.
 On most base platforms, memory mappings are established in a lazy
 fashion by core's page-fault resolution mechanism described in Section
 Page-fault handling.

 A region-map client in possession of a dataspace capability is
 able to attach the dataspace to the region map.
 Thereby the content of the dataspace becomes visible within the region
 map's virtual address space.
 When attaching a dataspace to a region map, core selects an appropriate
 virtual address range that is not yet populated with dataspaces.
 Alternatively, the client can specify a designated virtual address.
 It also has the option to attach a mere window of the dataspace to the region
 map. Furthermore, the client can specify whether the content of the
 dataspace should be executable or not.

 The counterpart of the attach operation is the detach operation, which
 enables the region-map client to remove
 dataspaces from the region map by specifying a virtual address. Under the
 hood, this operation flushes the MMU mappings of the corresponding virtual
 address range so that the dataspace content becomes invisible.

 Note that a single dataspace may be attached to any number of region maps.
 A dataspace may also be attached multiple times to one region map. In this
 case, each attach operation populates a distinct region of the virtual
 address space.

 Access to boot modules (ROM)

 During the initial bootstrap phase of the machine, a boot loader loads the
 kernel's binary and additional chunks of data called boot modules into the
 physical memory. After those preparations, the boot loader passes control to
 the kernel.
 Examples of boot modules are the ELF images of the core component, the
 init component, the components created by init, and the configuration of the
 init component.
 Core makes each boot module available as a ROM session1. Because boot modules
 are read-only memory, they are generally called ROM modules.
 On session construction, the client specifies the name of the ROM module
 as session argument.
 Once created, the ROM session allows its client to obtain a ROM dataspace
 capability. Using this capability, the client can make the ROM module
 visible within its local address space.
 The ROM session interface is described in more detail in
 Section Read-only memory (ROM).

 Protection domains (PD)

 A protection domain (PD) corresponds to a unit of protection within the Genode
 system. Typically, there is a one-to-one relationship between a component and
 a PD session1. Each PD consists of a virtual memory address space,
 a capability space
 (Section Capability spaces, object identities, and RPC objects), and a
 budget of physical memory and capabilities.
 Core's PD service also plays the role of a broker for asynchronous notifications
 on kernels that lack the semantics of Genode's signalling API.

 Physical memory and capability allocation

 Each PD session contains quota-bounded allocators for physical memory and
 capabilities. At session-creation time, its quota is zero. To make an
 allocator functional, it must first receive quota from another already
 existing PD session, which is called the reference account. Once the
 reference account is defined, quota can be transferred back and forth between
 the reference account and the new PD session.

 Provided that the PD session is equipped with sufficient quota, the PD
 client can allocate RAM dataspaces from the PD session. The size of
 each RAM dataspace is defined by the client at the time of allocation.
 The location of the dataspace in physical memory is defined by core.
 Each RAM dataspace is physically
 contiguous and can thereby be used as DMA buffer by a user-level device
 driver. In order to set up DMA transactions, such a device driver can request
 the physical address of a RAM dataspace by invoking the dataspace capability.

 Closing a PD session destroys all dataspaces allocated from
 the PD session and restores the original quota. This implies that these
 dataspaces disappear in all components. The quota of a closed PD session
 is transferred to the reference account.

 Virtual memory and capability space

 At the hardware-level, the CPU isolates different virtual memory address
 spaces via a memory-management unit. Each domain is represented by a different
 page directory, or an address-space ID (ASID). Genode provides an abstraction
 from the underlying hardware mechanism in the form of region maps as
 introduced in Section Region maps. Each PD is readily equipped with three
 region maps. The address space represents the layout of the PD's virtual
 memory address space, the stack area represents the portion of the PD's
 virtual address space where stacks are located, and the linker area is
 designated for dynamically linked shared objects. The stack area and linker
 area are attached to the address space at the component initialisation time.

 The capability space is provided as a kernel mechanism. Note that not all
 kernels provide equally good mechanisms to implement Genode's capability model
 as described in Section Capability-based security. On kernels with support
 for kernel-protected object capabilities, the PD session interface allows
 components to create and manage kernel-protected capabilities.
 Initially, the PD's capability space is empty. However, the PD client can
 install a single capability - the parent capability - using the assign-parent
 operation at the creation time of the PD.

 Region-map management (RM)

 As explained in Section Protection domains (PD), each PD session is
 equipped with three region maps by default. The RM service allows
 components to create additional region maps manually. Such manually
 created region maps are also referred to as managed dataspaces.
 A managed dataspace is not backed by a range of physical addresses but
 its content is defined by its underlying region map.
 This makes region maps a generalization of nested page tables.
 A region-map client can obtain a dataspace capability for a given region map
 and use this dataspace capability in the same way as any other dataspace
 capability, i.e., attaching it to its local address space, or delegating
 it to other components.

 Managed dataspaces are used in two ways. First, they allow for the manual
 management of portions of a component's virtual address space. For example,
 the so-called stack area of a protection domain is a dedicated virtual-address range
 preserved for stacks. Between the stacks, the virtual address space must
 remain empty so that stack overflows won't silently corrupt data. This
 is achieved by using a dedicated region map that represents the complete
 stack area. This region map is attached as a dataspace to the
 component's virtual address space. When creating a new thread along with its
 corresponding stack, the thread's stack is not directly attached to the
 component's address space but to the stack area's region map. Another
 example is the virtual-address range managed by a dynamic linker to load
 shared libraries into.

 The second use of managed dataspaces is the provision of on-demand-populated
 dataspaces. A server may hand out dataspace capabilities that are backed by
 region maps to its clients. Once the client has attached such a dataspace to its
 address space and touches it's content, the client triggers a page fault. Core
 responds to this page fault by blocking the client thread and delivering a
 notification to the server that created the managed dataspace along with
 the information about the fault address within the region map. The server can
 resolve this condition by attaching a dataspace with real backing store at the
 fault address, which prompts core to resume the execution of the faulted
 thread.

 Processing-time allocation (CPU)

 A CPU session1 is an allocator for processing time that allows for the creation,
 the control, and the destruction of threads of execution.
 At session-construction time, the affinity of a CPU session with CPU cores can
 be defined via session arguments.

 Once created, the session can be used to create, control, and kill threads.
 Each thread created via a CPU session is represented by a thread capability.
 The thread capability is used for subsequent thread-control operations.
 The most prominent thread-control operation is the start of the thread,
 which takes the thread's initial stack pointer and instruction pointer as
 arguments.

 During the lifetime of a thread, the CPU client can retrieve and manipulate
 the state of the thread. This includes the register state as well as the
 execution state (whether the thread is paused or running). Those operations
 are primarily designated for realizing user-level debuggers.

 To aid the graceful destruction of threads, the CPU client can issue a
 cancel-blocking operation, which causes the specified thread to cancel a
 current blocking operation such as waiting for an RPC response
 or the attempt to acquire a contended lock.

 Access to device resources (IO_MEM, IO_PORT, IRQ)

 Core's IO_MEM, IO_PORT, and IRQ services enable the realization of
 user-level device drivers as Genode components.

 Memory mapped I/O (IO_MEM)

 An IO_MEM session1 provides a dataspace representation for a non-memory part of
 the physical address space such as memory-mapped I/O regions or BIOS areas.
 In contrast to a memory block that is used for storing information, of which
 the physical location in memory is of no concern, a non-memory object has
 special semantics attached to its location within the physical address space.
 Its location is either fixed (by standard) or can be determined at runtime,
 for example by scanning the PCI bus for PCI resources. If the physical
 location of such a non-memory object is known, an IO_MEM session can be
 created by specifying the physical base address, the size, and the
 write-combining policy of the memory-mapped resource as session arguments.
 Once an IO_MEM session is created, the IO_MEM client can request a dataspace
 containing the specified physical address range.

 Core hands out each physical address range only once. Session requests for
 ranges that intersect with physical memory are denied. Even though the
 granularity of memory protection is limited by the MMU page size, the IO_MEM
 service accepts the specification of the physical base address and size at the
 granularity of bytes. The rationale behind this contradiction is the
 unfortunate existence of platforms that host memory-mapped resources of
 unrelated devices on the same physical page. When driving such devices from
 different components, each of those components requires access to its
 corresponding device. So the same physical page must be handed out to multiple
 components. Of course, those components must be trusted to not touch any
 portion of the page that is unrelated to its own device.

 Port I/O (IO_PORT)

 For platforms that rely on I/O ports for device access, core's IO_PORT service
 enables the fine-grained assignment of port ranges to individual components.
 Each IO_PORT session1 corresponds to the exclusive access right to a port range
 specified as session arguments. Core creates the new IO_PORT session only if
 the specified port range does not overlap with an already existing session.
 This ensures that each I/O port is driven by only one IO_PORT client at a
 time.
 The IO_PORT session interface resembles the physical I/O port access
 instructions.
 Reading from an I/O port can be performed via an 8-bit, 16-bit, or 32-bit access.
 Vice versa, there exist operations for writing to an I/O port via an 8-bit,
 16-bit, or 32-bit access.
 The read and write operations take absolute port addresses as arguments.
 Core performs the I/O-port operation only if the specified port address lies
 within the port range of the session.

 Reception of device interrupts (IRQ)

 Core's IRQ service enables device-driver components to respond to
 device interrupts. Each IRQ session1 corresponds to an interrupt.
 The physical interrupt number is specified as session argument.
 Each physical interrupt number can be specified by only one session.
 The IRQ session
 interface provides an operation to wait for the next interrupt.
 Only while the IRQ client is waiting for an interrupt, core unmasks the
 interrupt at the interrupt controller.
 Once the interrupt occurs, core wakes up the IRQ client and masks the
 interrupt at the interrupt controller until the driver has acknowledged the
 completion of the IRQ handling and waits for the next interrupt.

 Logging (LOG)

 The LOG service is used by the lowest-level system components such as the init
 component for printing diagnostic output.
 Each LOG session1 takes a label as session argument, which is used to prefix
 the output of this session.
 This enables developers to distinguish the output of different components with
 each component having a unique label.
 The LOG client transfers the to-be-printed characters as payload of plain RPC
 messages, which represents the simplest possible communication mechanism
 between the LOG client and core's LOG service.

 Event tracing (TRACE)

 The TRACE service provides a light-weight event-tracing facility. It is not
 fundamental to the architecture. However, as the service allows for the
 inspection and manipulation of arbitrary threads of a Genode system, TRACE
 sessions must not be granted to untrusted components.

 Component creation

 Each Genode component is made out of three basic ingredients:

 	PD

 	

 session representing the component's protection domain

 	ROM

 	

 session with the executable binary

 	CPU

 	

 session for creating the initial thread of the component

 	

 [image: img/creation_initial]

	
 Starting point for creating a new component

 It is the responsibility of the new component's parent to obtain those
 sessions. The initial situation of the parent is depicted in Figure
 img/creation_initial.
 The parent's memory budget is represented by the
 parent's PD (Section Protection Domains (PD)) session.
 The parent's virtual address space is represented by the region map contained
 in the parent's PD session.
 The parent's PD session was originally created at the parent's construction time.
 Along with the parent's CPU session, it forms
 the parent's so-called environment. The address space is populated
 with the parent's code (shown as red), the so-called
 stack area that hosts the stacks (shown as blue), and
 presumably several RAM dataspaces for the heap, the DATA segment,
 and the BSS segment. Those are shown as yellow.

 Obtaining the child's ROM and PD sessions

 The first step for creating a child component is obtaining the component's
 executable binary, e.g., by creating a session to a ROM service such as the
 one provided by core (Section Access to boot modules (ROM)). With the
 ROM session created, the parent can make the dataspace with the executable
 binary (i.e., an ELF binary) visible within its virtual address space by
 attaching the dataspace to its PD's region map. After this step, the parent is
 able to inspect the ELF header to determine the memory requirements for the
 binary's DATA and BSS segments.

 The next step is the creation of the child's designated PD session, which
 holds the memory and capability budgets the child will have at its disposal.
 The freshly created PD session has no budget though. In order to make the PD
 session usable, the parent has to transfer a portion of its own RAM quota to
 the child's PD session. As explained in Section Resource assignment, the
 parent registers its own PD session as the reference account for the child's
 PD session in order to become able to transfer quota back and forth
 between both PD sessions. Figure img/creation_rom_pd shows the situation.

 	

 [image: img/creation_rom_pd]

	
 The parent creates the PD session of the new child and obtains the child's executable

 Constructing the child's address space

 With the child's PD session equipped with a memory, the parent can construct
 the address space for the new child and populate it with memory allocated
 from the child's budget (Figure img/creation_pdsession).
 The address-space layout is represented as a region map that is part of each
 PD session (Section Protection domains (PD)).
 The first page of the address space is excluded such that
 any attempt by the child to de-reference a null pointer will cause a
 fault instead of silently corrupting memory. After its creation time, the
 child's region map is empty. It is up to the parent to populate the virtual
 address space with meaningful information by attaching dataspaces to the
 region map. The parent performs this procedure based on the information found
 in the ELF executable's header:

 	

 [image: img/creation_pdsession]

	
 The parent creates and populates the virtual address space of the child using a new PD session (the parent's PD session is not depicted for brevity)

 	Read-only segments

 	

 For each read-only segment of the ELF binary, the parent attaches the
 corresponding portion of the ELF dataspace to the child's address space
 by invoking the attach operation on the child's region-map capability.
 By attaching a portion of the existing ELF dataspace to the new child's
 region map, no memory must be copied. If multiple instances of the same
 executable are created, the read-only segments of all instances refer to the
 same physical memory pages.
 If the segment contains the TEXT segment (the program code), the parent
 specifies a so-called executable flag to the attach operation. Core passes
 this flag to the respective kernel such that the corresponding page-table
 entries for the new components will be configured accordingly (by setting or
 clearing the non-executable bit in the page-table entries).
 Note that the propagation of this information (or the lack thereof) depends
 on the kernel used. Also note that not all hardware platforms distinguish
 executable from non-executable memory mappings.

 	Read-writable segments

 	

 In contrast to read-only segments, read-writable segments cannot be shared
 between components. Hence, each read-writable segment must be backed with
 a distinct copy of the segment data. The parent allocates the backing store
 for the copy from the child's PD session and thereby accounts the memory
 consumption on behalf of the child to the child's budget. For each
 segment, the parent performs the following steps:

 	

 Allocation of a RAM dataspace from the child's PD session. The size of the
 dataspace corresponds to the segment's memory size. The memory size
 may be higher than the size of the segment in the ELF binary (named
 file size). In particular, if the segment contains a DATA section
 followed by a BSS section, the file size corresponds to the size of the
 DATA section whereby the memory size corresponds to the sum of both
 sections. Core's PD service ensures that each freshly allocated RAM
 dataspace is guaranteed to contain zeros. Core's PD service returns
 a RAM dataspace capability as the result of the allocation operation.

 	

 Attachment of the RAM dataspace to the parent's virtual address space
 by invoking the attach operation on the parent's region map with the
 RAM dataspace capability as argument.

 	

 Copying of the segment content from the ELF binary's dataspace to the
 freshly allocated RAM dataspace. If the memory size of the segment is
 larger than the file size, no special precautions are needed as the
 remainder of the RAM dataspace is known to be initialized with zeros.

 	

 After filling the content of the segment dataspace, the parent no longer
 needs to access it. It can remove it from its virtual address space
 by invoking the detach operation on its own region map.

 	

 Based on the virtual segment address as found in the ELF header, the
 parent attaches the RAM dataspace to the child's virtual address space
 by invoking the attach operation on the child PD's region map with the
 RAM dataspace as argument.

 This procedure is repeated for each segment. Note that although the above
 description refers to ELF executables, the underlying mechanisms used to
 load the executable binary are file-format agnostic.

 Creating the initial thread

 	

 [image: img/creation_thread]

	
 Creation of the child's initial thread

 With the virtual address space of the child configured, it is time to
 create the component's initial thread. Analogously to the child's PD
 session, the parent creates a CPU session
 (Section Processing-time allocation (CPU)) for the child.
 The parent may use session arguments to constrain the scheduling parameters
 (i.e., the priority) and the CPU affinity of the new child.
 Whichever session arguments are specified, the child's abilities will never
 exceed the parent's abilities. I.e., the child's priority is subjected to the
 parent's priority constraints.
 Once constructed, the CPU session can be used to create new threads by
 invoking the session's create-thread operation with the thread's designated
 PD as argument.
 Based on this association of the thread with its PD, core is able to respond to
 page faults triggered by the thread.
 The invocation of this operation results in a thread capability, which can be
 used to control the execution of the thread.
 Immediately after its creation, the thread remains inactive.
 In order to be executable, it first needs to be configured.

 As described in Section Component ownership, each PD has
 initially a single capability installed, which allows the child to communicate
 with its parent.
 Right after the creation of the PD for a new child, the parent can register
 a capability to a locally implemented RPC object as parent capability for the
 PD session.
 Now that the child's PD is equipped with an initial thread and a communication
 channel to its parent,
 it is the right time to kick off the execution of the
 thread by invoking the start operation on its thread capability. The start
 operation takes the initial program counter as argument,
 which corresponds to the program's entry-point
 address as found in the ELF header of the child's executable binary.
 Figure img/creation_thread illustrates the relationship between the
 PD session, the CPU session, and the parent capability. Note that neither the
 ROM dataspace containing the ELF binary nor the RAM dataspaces
 allocated during the ELF loading are visible in the parent's
 virtual address space any longer. After the initial loading of the ELF binary,
 the parent has detached those dataspaces from its own region map.

 The child starts its execution at the virtual address defined by the ELF
 entrypoint. It points to a short assembly
 routine that sets up the initial stack and calls the low-level C++ startup
 code. This code, in turn, initializes the C++ runtime (such as the exception
 handling) along with the component's local Genode environment. The environment
 is constructed by successively requesting the component's CPU and PD
 sessions from its parent. With the Genode environment in place, the startup
 code initializes the stack area, sets up the real stack for the initial
 thread within the stack area, and returns to the assembly startup
 code. The assembly code, in turn, switches the stack from the initial stack to
 the real stack and calls the program-specific C++ startup code. This code
 initializes the component's initial entrypoint and executes all global
 constructors before calling the component's construct function.
 Section Component-local startup code and linker scripts describes
 the component-local startup procedure in detail.

 Inter-component communication

 Genode provides three principle mechanisms for inter-component communication,
 namely synchronous remote procedure calls (RPC), asynchronous notifications, and
 shared memory.
 Section Synchronous remote procedure calls (RPC) describes synchronous RPC
 as the most prominent one. In addition to
 transferring information across component boundaries, the RPC mechanism
 provides the means for delegating capabilities and thereby authority
 throughout the system.

 The RPC mechanism closely resembles the semantics
 of a function call where the control is transferred from the caller to
 the callee until the function returns.
 As discussed in Section Client-server relationship, there are situations
 where the provider of information does not wish to depend on the recipient to
 return control. Such situations are addressed by the means of an asynchronous
 notification mechanism explained in Section Asynchronous notifications.

 Neither synchronous RPC nor asynchronous notifications are suitable for
 transferring large bulks of information between components. RPC messages
 are strictly bound to a small size and asynchronous notifications do not
 carry any payload at all. This is where shared memory comes into play.
 By sharing memory between components, large bulks of information
 can be propagated without the active participation of the kernel.
 Section Shared memory explains the procedure of establishing shared memory
 between components.

 Each of the three basic mechanisms is rarely found in isolation.
 Most inter-component interactions are a combination of these mechanisms.
 Section Asynchronous state propagation introduces a pattern for propagating
 state information by combining asynchronous notifications with RPC.
 Section Synchronous bulk transfer shows how synchronous RPC can be
 combined with shared memory to transfer large bulks of information in a
 synchronous way. Section Asynchronous bulk transfer - packet streams
 combines asynchronous notifications with shared memory to largely
 decouple producers and consumers of high-throughput data streams.

 \clearpage

 Synchronous remote procedure calls (RPC)

 Section Capability invocation introduced remote procedure calls (RPC)
 as Genode's fundamental mechanism to delegate authority between
 components.
 It introduced the terminology for RPC objects, capabilities, object
 identities, and entrypoints.
 It also outlined the flow of control between a client, the kernel, and a
 server during an RPC call.
 This section complements Section Capability invocation with the information
 of how the mechanism presents itself at the C++ language level.
 It first introduces the layered structure of the RPC mechanism and the notion
 of typed capabilities.
 After presenting the class structure of an RPC server, it shows how those
 classes interact when RPC objects are created and called.

 Typed capabilities

 	

 [image: img/rpc_layers]

	
 Layered architecture of the RPC mechanism

 Figure img/rpc_layers depicts the software layers of the RPC mechanism.

 	Kernel inter-process-communication (IPC) mechanism

 	

 At the lowest level, the kernel's IPC mechanism is used to transfer messages
 back and forth between client and server. The actual mechanism largely
 differs between the various kernels supported by Genode.
 Chapter Under the hood gives insights into the
 functioning of the IPC mechanism as used on specific kernels.
 Genode's capability-based security model is based on the presumption
 that the kernel protects object identities as kernel objects,
 allows user-level components to refer to kernel objects via capabilities,
 and supports the delegation of capabilities between components using
 the kernel's IPC mechanism.
 At the kernel-interface level, the kernel is not aware of language
 semantics like the C++ type system. From the kernel's point of view,
 an object identity merely exists and can be referred to, but has no type.

 	IPC library

 	

 The IPC library introduces a kernel-independent programming interface
 that is needed to implement the principle semantics of clients and servers.
 For each kernel supported by Genode, there exists a distinct IPC library
 that uses the respective kernel mechanism. The IPC library introduces the
 notions of untyped capabilities, message buffers, IPC clients,
 and IPC servers.

 An untyped capability is the representation of a Genode capability at
 the C++ language level. It consists of the local name of the referred-to
 object identity as well as a means to manage the lifetime of the
 capability, i.e., a reference counter. The exact representation of an
 untyped capability depends on the kernel used.

 A message buffer is a statically sized buffer that carries the payload
 of an IPC message. It distinguishes two types of payload, namely raw data
 and capabilities. Payloads of both kinds can be simultaneously present.
 A message buffer can carry up to 1 KiB of raw data and up to four
 capabilities.
 Prior to issuing the kernel IPC operation, the IPC library translates the
 message-buffer content to the format understood by the kernel's IPC
 operation.

 The client side of the communication channel executes an IPC call
 operation with a destination capability, a send buffer, and a receive buffer
 as arguments.
 The send buffer contains the RPC function arguments, which can comprise
 plain data as well as capabilities.
 The IPC library transfers these arguments to the server via a
 platform-specific kernel operation and waits for the server's response.
 The response is returned to the caller as new content of the receive
 buffer.

 At the server side of the communication channel, an entrypoint thread
 executes the IPC reply and IPC reply-and-wait operations to interact
 with potentially many clients.
 Analogously to the client, it uses two message buffers, a receive buffer
 for incoming requests and a send buffer for delivering the reply of the last
 request.
 For each entrypoint, there exists an associated untyped
 capability that is created with the entrypoint. This capability
 and can be combined with an IPC client object to perform calls to the
 server.
 The IPC reply-and-wait operation delivers the content of the reply buffer
 to the last caller and then waits for a new request using a platform-specific
 kernel operation. Once unblocked by the kernel, it returns the arguments
 for the new request in the request buffer.
 The server does not obtain any form of client identification along with
 an incoming message that could be used to implement server-side
 access-control policies.
 Instead of performing access control based on a client identification in the
 server, access control is solely performed by the kernel on the invocation
 of capabilities.
 If a request was delivered to the server, the client has by definition
 a capability for communicating with the server and thereby the authority
 to perform the request.

 	RPC stub code

 	

 The RPC stub code complements the IPC library with the semantics of RPC
 interfaces and RPC functions. An RPC interface is an abstract C++ class
 with the declarations of the functions callable by RPC clients.
 Thereby each RPC interface is represented as a C++ type.
 The declarations are accompanied with annotations that allow the C++
 compiler to generate the so-called RPC stub code on both the client side and
 server side. Genode uses
 C++ templates to generate the stub code, which avoids the crossing of a
 language barrier when designing RPC interfaces and alleviates the need for
 code-generating tools in addition to the compiler.

 The client-side stub code translates C++ method calls to IPC-library
 operations. Each RPC function of an
 RPC interface has an associated opcode (according to the order of RPC
 functions). This opcode along with the method arguments are inserted
 into the IPC client's send buffer. Vice versa, the stub code translates
 the content of the IPC client's receive buffer to return values of the
 method invocation.

 The server-side stub code implements the so-called dispatch function,
 which takes the IPC server's receive buffer, translates the message
 into a proper C++ method call, calls the corresponding server-side function
 of the RPC interface, and translates the function results into the
 IPC server's send buffer.

 	RPC object and client object

 	

 Thanks to the RPC stub code, the server-side implementation of an RPC
 object comes down to the implementation of the abstract interface of the
 corresponding RPC interface.
 When an RPC object is associated with an entrypoint, the entrypoint creates
 a unique capability for the given RPC object.
 RPC objects are typed with their corresponding RPC interface. This C++ type
 information is propagated to the corresponding capabilities. For example,
 when associating an RPC object that implements the LOG-session interface
 with an entrypoint, the resulting capability is a LOG-session capability.

 This capability represents
 the authority to invoke the functions of the RPC object.
 On the client side, the client object plays the role of a proxy of the RPC
 object within the client's component.
 Thereby, the client becomes able to interact with the RPC object in a
 natural manner.

 	Sessions and connections

 	

 Section Services and sessions introduced sessions between client and
 server components as the basic building blocks of system composition.
 At the server side each session is represented by an RPC object that
 implements the session interface. At the client side, an open session
 is represented by a connection object. The connection object encapsulates
 the session arguments and also represents a client object to interact
 with the session.

 	

 [image: img/capability_types]

	
 Fundamental capability types

 As depicted in Figure img/rpc_layers, capabilities are associated with
 types on all levels above the IPC library.
 Because the IPC library is solely
 used by the RPC stub code but not at the framework's API level,
 capabilities appear as being C++ type safe, even across component boundaries.
 Each RPC interface implicitly defines a corresponding capability type.
 Figure img/capability_types shows the inheritance graph of Genode's
 most fundamental capability types.

 Server-side class structure

 	

 [image: img/rpc_classes]

	
 Server-side structure of the RPC mechanism

 Figure img/rpc_classes gives on overview of the C++ classes that are
 involved at the server side of the RPC mechanism. As described in
 Section Capability invocation,
 each entrypoint maintains a so-called object pool. The object pool contains
 references to RPC objects associated with the entrypoint. When receiving
 an RPC request along with the local name of the invoked object identity,
 the entrypoint uses the object pool to lookup the corresponding RPC object.
 As seen in the figure, the RPC object is a class template parametrized with
 its RPC interface. When instantiated, the dispatch function is generated
 by the C++ compiler according to the RPC interface.

 \clearpage

 RPC-object creation

 Figure img/new_rpc_obj_seq shows the procedure of creating a new RPC object.
 The server component has already created an entrypoint, which, in turn,
 created its corresponding object pool.

 	

 [image: img/new_rpc_obj_seq]

	
 Creation of a new RPC object

 	

 The server component creates an instance of an RPC object.
 "RPC object" denotes an object that inherits the RPC object class
 template typed with the RPC interface and that implements the virtual
 functions of this interface. By inheriting the RPC object class template,
 it gets equipped with a dispatch function for the given RPC interface.

 Note that a single entrypoint can be used to manage any number of RPC
 objects of arbitrary types.

 	

 The server component associates the RPC object with the entrypoint by
 calling the entrypoint's manage function with the RPC object as argument.
 The entrypoint responds to this call by allocating a new object identity
 using a session to core's PD service (Section Protection domains (PD)).
 For allocating the new object identity, the entrypoint specifies the
 untyped capability of its IPC server as argument.
 Core's PD service responds to the request by instructing the kernel to
 create a new object identity associated with the untyped capability.
 Thereby, the kernel creates a new capability that is derived from the
 untyped capability.
 When invoked, the derived capability refers to the same IPC server as the
 original untyped capability.
 But it represents a distinct object identity. The IPC server retrieves
 the local name of this object identity when called via the derived
 capability.
 The entrypoint stores the association of the derived capability
 with the RPC object in the object pool.

 	

 The entrypoint hands out the derived capability as return value of the
 manage function. At this step, the derived capability is converted into
 a typed capability with its type corresponding to the type of the RPC
 object that was specified as argument. This way, the link between the
 types of the RPC object and the corresponding capability is preserved
 at the C++ language level.

 	

 The server delegates the capability to another component, e.g., as
 payload of a remote procedure call. At this point, the client receives
 the authority to call the RPC object.

 RPC-object invocation

 Figure img/call_rpc_obj_seq shows the flow of execution when a client
 calls an RPC object by invoking a capability.

 	

 [image: img/call_rpc_obj_seq]

	
 Invocation of an RPC object

 	

 The client invokes the given capability using an instance of an RPC client
 object, which uses the IPC library to invoke the kernel's IPC mechanism.
 The kernel delivers the request to the IPC server that belongs to the
 invoked capability and wakes up the corresponding entrypoint. On reception
 of the request, the entrypoint obtains the local name of the invoked
 object identity.

 	

 The entrypoint uses the local name of the invoked object identity as a key
 into its object pool to look up the matching RPC object. If the lookup
 fails, the entrypoint replies with an error.

 	

 If the matching RPC object was found, the entrypoint calls the
 RPC object's dispatch method. This method is implemented by the
 server-side stub code. It converts the content of the receive buffer of the
 IPC server to a method call. I.e., it obtains the opcode of the RPC function
 from the receive buffer to decide which method to call, and supplies
 the arguments according to the definition in the RPC interface.

 	

 On the return of the RPC function, the RPC stub code populates the send
 buffer of the IPC server with the function results and invokes the kernel's
 reply operation via the IPC library. Thereby, the entrypoint becomes ready
 to serve the next request.

 	

 When delivering the reply to the client, the kernel resumes the execution
 of the client, which can pick up the results of the RPC call.

 \clearpage

 Asynchronous notifications

 The synchronous RPC mechanism described in the previous section is not
 sufficient to cover all forms of inter-component interactions. It shows
 its limitations in the following situations.

 	Waiting for multiple conditions

 	

 In principle, the RPC mechanism can be used by an RPC client to block
 for a condition at a server. For example, a timer server could provide
 a blocking sleep function that, when called by a client, blocks the client
 for a certain amount of time. However, if the client wanted to respond to
 multiple conditions such as a timeout, incoming user input, and network
 activity, it would need to spawn one thread for each condition where each
 thread would block for a different condition. If one condition triggers, the
 respective thread would resume its execution and respond to the condition.
 However, because all threads could potentially be woken up independently
 from each other as their execution depends only on their respective
 condition they need to synchronize access to shared state.
 Consequently, components that need to respond to multiple conditions
 would not only waste threads but also suffer from synchronization overhead.

 At the server side, the approach of blocking RPC calls is equally bad
 in the presence of multiple clients. For example, a timer service with
 the above outlined blocking interface would need to spawn one thread per
 client.

 	Signaling events to untrusted parties

 	

 With merely synchronous RPC, a server cannot deliver sporadic events to
 its clients. If the server wanted to inform one of its clients about such
 an event, it would need to act as a client itself by performing an RPC call to
 its own client. However, by performing an RPC call, the caller
 passes the control of execution to the callee. In the case of a server
 that serves multiple clients, it would put the availability of the server
 at the discretion of all its clients, which is unacceptable.

 A similar situation is the interplay between a parent and a child where
 the parent does not trust its child but still wishes to propagate sporadic
 events to the child.

 The solution to those problems is the use of asynchronous notifications,
 also named signals.
 Figure img/signal_seq shows the interplay between two components.
 The component labeled as signal handler responds to potentially many
 external conditions propagated as signals. The component labeled as signal
 producer triggers a condition. Note that both can be arbitrary components.

 \clearpage

 	

 [image: img/signal_seq]

	
 Interplay between signal producer and signal handler

 Signal-context creation and delegation

 The upper part of Figure img/signal_seq depicts the steps needed by a
 signal handler to become able to receive asynchronous notifications.

 	

 Each Genode component is equipped with at least one initial entrypoint that
 responds to incoming RPC requests as well as asynchronous notifications.
 Similar to how it can handle requests for an arbitrary number of RPC objects,
 it can receive signals from many different sources.
 Within the signal-handler component,
 each source is represented as a so-called signal context. A component
 that needs to respond to multiple conditions creates one signal context
 for each condition. In the figure, a signal context "c" is created.

 	

 The signal-handler component associates the signal context with its
 entrypoint via the manage method.
 Analogous to the way how RPC objects are associated with entrypoints,
 the manage method returns a capability for the signal context.
 Under the hood, the entrypoint uses core's PD service to create
 this kind of capability.

 	

 As for regular capabilities, a signal-context capability can be delegated
 to other components. Thereby, the authority to trigger signals for the
 associated context is delegated.

 Triggering signals

 The lower part of Figure img/signal_seq illustrates the use of a
 signal-context capability by the signal producer.

 	

 Now in possession of the signal-context capability, the signal producer
 creates a so-called signal transmitter for the capability.
 The signal transmitter can be used to trigger a signal by calling the
 submit method. This method returns immediately. In contrast to
 a remote procedure call, the submission of a signal is a fire-and-forget
 operation.

 	

 At the time when the signal producer submitted the first signal, the
 signal handler is not yet ready to handle them. It is still busy with other
 things.
 Once the signal handler becomes ready to receive a new signal, the
 pending signal is delivered, which triggers the execution of the
 corresponding signal-handler method.
 Note that signals are not buffered. If signals are triggered at a high
 rate, multiple signals may result in only a single execution of the
 signal handler. For this reason, the handler cannot infer the number
 of events from the number of signal-handler invocations. In situations
 where such information is needed, the signal handler must retrieve it
 via another mechanism such as an RPC call to query the most current
 status of the server that produced the signals.

 	

 After handling the first batch of signals, the signal handler component
 blocks and becomes ready for another signal or RPC request.
 This time, no signals are immediately pending. After
 a while, however, the signal producer submits another signal, which
 eventually triggers another execution of the signal handler.

 In contrast to remote procedure calls, signals carry no payload. If signals
 carried any payload, this payload would need to be buffered somewhere.
 Regardless of where this information is buffered, the buffer could overrun
 if signals are submitted at a higher rate than handled. There might be
 two approaches to deal with this situation. The first option would be to
 drop the payload once the buffer overruns, which would make the mechanism
 indeterministic, which is hardly desirable. The second option would be
 to sacrifice the fire-and-forget semantics at the producer side, blocking
 the producer when the buffer is full. However, this approach would put the
 liveliness of the producer at the whim of the signal handler. Consequently,
 signals are void of any payload.

 \clearpage

 Shared memory

 	

 [image: img/shared_memory_seq]

	
 Establishing shared memory between client and server. The server interacts with core's PD service. Both client and server interact with the region maps of their respective PD sessions at core.

 By sharing memory between components, large amounts of information can be
 propagated across protection-domain boundaries without the active involvement of
 the kernel.

 Sharing memory between components raises a number of questions.
 First, Section Resource trading explained that physical memory resources
 must be explicitly assigned to components either by their respective parents
 or by the means of resource trading. This raises the question of which
 component is bound to pay for the memory shared between multiple components.
 Second, unlike traditional operating systems where different programs can
 refer to globally visible files and thereby establish shared memory by
 mapping a prior-agreed file into their respective virtual memory spaces, Genode
 does not have a global name space. How do components refer to the to-be-shared
 piece of memory?
 Figure img/shared_memory_seq answers these questions showing the sequence of
 shared-memory establishment between a server and its client. The diagram
 depicts a client, core, and a server.
 The notion of a client-server relationship is intrinsic for the shared-memory
 mechanism.
 When establishing shared memory between components, the component's roles as
 client and server must be clearly defined.

 	

 The server interacts with core's PD service to allocate a new RAM dataspace.
 Because the server uses its own PD session for that allocation, the
 dataspace is paid for by the server. At first glance, this seems contradictory
 to the principle that clients should have to pay for using
 services as discussed in
 Section Trading memory between clients and servers.
 However, this is not the case. By establishing the client-server
 relationship, the client has transferred a budget of RAM to the server
 via the session-quota mechanism.
 So the client already paid for the memory. Still, it is the server's
 responsibility to limit the size of the allocation to the client's session
 quota.

 Because the server allocates the dataspace, it is the owner of the
 dataspace. Hence, the lifetime of the dataspace is controlled by the
 server.

 Core's PD service returns a dataspace capability as the result of the
 allocation.

 	

 The server makes the content of the dataspace visible in its virtual
 address space by attaching the dataspace within the region map of its
 PD session. The server
 refers to the dataspace via the dataspace capability as returned from the
 prior allocation.
 When attaching the dataspace to the server's region map, core's PD service
 maps the dataspace content at a suitable virtual-address range that is
 not occupied with existing mappings and returns the base
 address of the occupied range to the server.
 Using this base address and the known dataspace size, the server can
 safely access the dataspace content by reading from or writing to its virtual
 memory.

 	

 The server delegates the authority to use the dataspace to the client.
 This delegation can happen in different ways, e.g., the client could
 request the dataspace capability via an RPC function at the server.
 But the delegation could also involve further components that transitively
 delegate the dataspace capability. Therefore, the delegation operation is
 depicted as a dashed line.

 	

 Once the client has obtained the dataspace capability, it can use the region
 map of its own PD session to make the dataspace content visible in its
 address space. Note that even though both client and server use core's PD
 service, each component uses a different session.
 Analogous to the server, the client receives a client-local address
 within its virtual address space as the result of the attach operation.

 	

 After the client has attached the dataspace within its region map,
 both client and server can access the shared memory using their respective
 virtual addresses.

 In contrast to the server, the client is not in control over the lifetime of
 the dataspace.
 In principle, the server, as the owner of the dataspace, could free the
 dataspace at its PD session at any time and thereby revoke the corresponding
 memory mappings in all components that attached the dataspace.
 The client has to trust the server with respect to its liveliness, which
 is consistent with the discussion in Section Client-server relationship.
 A well-behaving server should tie the lifetime of a shared-memory dataspace
 to the lifetime of the client session. When the server frees the dataspace
 at its PD session, core implicitly detaches the dataspace from all
 region maps. Thereby the dataspace will become inaccessible to the client.

 Asynchronous state propagation

 In many cases, the mere information that a signal occurred is insufficient
 to handle the signal in a meaningful manner. For example, a component that
 registers a timeout handler at a timer server will eventually receive a
 timeout. But in order to handle the timeout properly, it needs to know the
 actual time. The time could not be delivered along with the timeout because
 signals cannot carry any payload. But the timeout handler may issue a
 subsequent RPC call to the timer server for requesting the time.

 Another example of this combination of asynchronous notifications and
 remote procedure calls is the resource-balancing protocol described in Section
 Dynamic resource balancing.

 Synchronous bulk transfer

 The synchronous RPC mechanism described in
 Section Synchronous remote procedure calls (RPC) enables components
 to exchange information via a kernel operation. In contrast to shared
 memory, the kernel plays an active role by copying information (and
 delegating capabilities) between the communication partners.
 Most kernels impose a restriction onto the maximum message size.
 To comply with all kernels supported by Genode, RPC messages must not exceed
 a size of 1 KiB.
 In principle, larger payloads could be transferred as a sequence
 of RPCs. But since each RPC implies the costs of two context switches, this
 approach is not suitable for transferring large bulks of data. But by combining
 synchronous RPC with shared memory, these costs can be mitigated.

 	

 [image: img/sync_bulk_seq]

	
 Transferring bulk data by combining synchronous RPC with shared memory

 Figure img/sync_bulk_seq shows the procedure of transferring large bulk
 data using shared memory as a communication buffer while using synchronous
 RPCs for arbitrating the use of the buffer.
 The upper half of the figure depicts the setup phase that needs to be performed
 only once. The lower half exemplifies an operation where the client transfers
 a large amount of data to the server, which processes the data before
 transferring a large amount of data back to the client.

 	

 At session-creation time, the server allocates the dataspace, which
 represents the designated communication buffer.
 The steps resemble those described in Section Shared memory.
 The server uses session quota provided by the client for the allocation.
 This way, the client is able to aid the dimensioning of the dataspace by
 supplying an appropriate amount of session quota to the server.
 Since the server performed the allocation, the server is in control of the
 lifetime of the dataspace.

 	

 After the client established a session to the server, it initially queries
 the dataspace capability from the server using a synchronous RPC and
 attaches the dataspace to its own address space. After this step, both
 client and server can read and write the shared communication buffer.

 	

 Initially the client plays the role of the user of the dataspace.
 The client writes the bulk data into the dataspace. Naturally, the maximum
 amount of data is limited by the dataspace size.

 	

 The client performs an RPC call to the server. Thereby, it hands over the
 role of the dataspace user to the server. Note that this handover is not
 enforced. The client's PD retains the right to access the dataspace, i.e.,
 by another thread running in the same PD.

 	

 On reception of the RPC, the server becomes active. It reads and processes
 the bulk data, and writes its results to the dataspace. The server must not
 assume to be the exclusive user of the dataspace. A misbehaving client
 may change the buffer content at any time. Therefore, the server must take
 appropriate precautions. In particular, if the data must be validated at
 the server side, the server must copy the data from the shared dataspace to
 a private buffer before validating and using it.

 	

 Once the server has finished processing the data and written the results
 to the dataspace, it replies to the RPC. Thereby, it hands back the role
 of the user of the dataspace to the client.

 	

 The client resumes its execution with the return of the RPC call, and
 can read the result of the server-side operation from the dataspace.

 The RPC call may be used for carrying control information. For example, the
 client may provide the amount of data to process, or the server may provide
 the amount of data produced.

 Asynchronous bulk transfer - packet streams

 The packet-stream interface complements the facilities for the synchronous
 data transfer described in Sections Synchronous remote procedure calls (RPC)
 and Synchronous bulk transfer with a mechanism that carries payload over a
 shared memory block and employs an asynchronous data-flow protocol.
 It is designed for large bulk payloads such as network traffic, block-device
 data, video frames, and USB URB payloads.

 	

 [image: img/packet_stream]

	
 Life cycle of a data packet transmitted over the packet-stream interface

 As illustrated in Figure img/packet_stream, the communication buffer
 consists of three parts: a submit queue, an acknowledgement queue, and a
 bulk buffer.
 The submit queue contains packets generated by the source to be processed
 by the sink. The acknowledgement queue contains packets that are processed
 and acknowledged by the sink. The bulk buffer contains the actual payload.
 The assignment of packets to bulk-buffer regions is performed by the
 source.

 A packet is represented by a packet descriptor that refers to a portion
 of the bulk buffer and contains additional control
 information. Such control information may include an opcode and further
 arguments interpreted at the sink to perform an operation on the supplied
 packet data.
 Either the source or the sink is in charge of handling a given packet at a
 given time. At the points 1, 2, and 5, the packet is owned by the
 source. At the points 3 and 4, the packet is owned by the sink. Putting a
 packet descriptor in the submit or acknowledgement queue represents a
 handover of responsibility.
 The life cycle of a single packet looks as follows:

 	

 The source allocates a region of the bulk buffer for storing the packet
 payload (packet alloc). It then requests the local pointer to
 the payload (packet content) and fills the packet with data.

 	

 The source submits the packet to the submit queue (submit packet).

 	

 The sink requests a packet from the submit queue (get packet),
 determines the local pointer to the payload (packet content),
 and processes the contained data.

 	

 After having finished the processing of the packet, the sink acknowledges
 the packet (acknowledge packet), placing the packet into the
 acknowledgement queue.

 	

 The source reads the packet from the acknowledgement queue and releases
 the packet (release packet). Thereby, the region of the bulk buffer
 that was used by the packet becomes marked as free.

 This protocol has four corner cases that are handled by signals:

 	Submit queue is full

 	

 when the source is trying to submit a new packet.
 In this case, the source blocks and waits for the sink to remove packets
 from the submit queue. If the sink observes such a condition (when it
 attempts to get a packet from a full submit queue), it delivers a
 ready-to-submit signal to wake up the source.

 	Submit queue is empty

 	

 when the sink tries to obtain a packet from an
 empty submit queue, it may block. If the source places a
 packet into an empty submit queue, it delivers a packet-avail
 signal to wake up the sink.

 	Acknowledgement queue is full

 	

 when the sink tries to acknowledge a packet
 at a saturated acknowledgement queue, the sink needs to wait until the source
 removes an acknowledged packet from the acknowledgement queue. The source
 notifies the sink about this condition by delivering a ready-to-ack
 signal. On reception of the signal, the sink wakes up and proceeds to
 submit packets into the acknowledgement queue.

 	Acknowledgement queue is empty

 	

 when the source tries to obtain an
 acknowledged packet (get acked packet) from an empty acknowledgement
 queue. In this case, the source may block until the sink places another
 acknowledged packet into the empty acknowledgement queue and delivers an
 ack-avail signal.

 If bidirectional data exchange between a client and a server is desired,
 there are two approaches:

 	One stream of operations

 	

 If data transfers in either direction are triggered by the client only, a
 single packet stream where the client acts as the source and
 the server represents the sink can accommodate transfers in both directions.
 For example, the block session interface (Section Block) represents read
 and write requests as packet descriptors. The allocation of the operation's
 read or write buffer within the bulk buffer is performed by the client,
 being the source of the stream of operations.
 For write operations, the client populates the write buffer with the
 to-be-written information before submitting the packet.
 When the server processes the incoming packets, it distinguishes the
 read and write operations using the control information given in the
 packet descriptor. For a write operation, it processes the information
 contained in the packet. For a read operation, it populates the packet
 with new information before acknowledging the packet.

 	Two streams of data

 	

 If data transfers in both directions can be triggered independently from
 client and server, two packet streams can be used. For example, the
 NIC session interface (Section NIC) uses one packet stream for ingoing
 and one packet stream for outgoing network traffic. For outgoing traffic,
 the client plays the role of the source. For incoming traffic, the
 server (such as a NIC driver) is the source.

Genode OS Framework Foundations

 Components

 The architecture introduced in Chapter Architecture clears the way to
 compose sophisticated systems out of many building blocks. Each building
 block is represented by an individual component that resides in a dedicated
 protection domain and interacts with other components in a well-defined manner.
 Those components do not merely represent applications but all typical
 operating-system functionalities.

 Components can come in a large variety of shape and form.
 Compared to a monolithic operating-system kernel, a component-based operating
 system challenges the system designer by enlarging the design space with the
 decision of the functional scope of each component and thereby the granularity
 of componentization. This decision depends on several factors:

 	Security

 	

 The smaller a component, the lower the risk for bugs and vulnerabilities.
 The more rigid a component's interfaces, the smaller its attack surface
 becomes.
 Hence, the security of a complex system function can potentially be vastly
 improved by splitting it into a low-complexity component that encapsulates
 the security-critical part and a high-complexity component that is
 uncritical for security.

 	Performance

 	

 The split of functionality into multiple components introduces
 inter-component communication and thereby context-switch overhead.
 If a functionality is known to be performance critical, such a split
 should clearly be motivated by a benefit for security.

 	Reusability

 	

 Componentization can be pursued to improve reusability while sometimes
 disregarding performance considerations at the same time. However,
 reusability can also be achieved by
 moving functionality into libraries that can easily be reused by linking
 them directly against library-using components. By using a dynamic linker,
 linking can even happen at run time, which yields the same flexibility
 as the use of multiple distinct components. Therefore, the split of
 functionality into multiple components for the sole sake of modularization
 has to be questioned.

 Sections Device drivers, Protocol stacks, Resource multiplexers, and
 Runtime environments and applications aid the navigation within the
 componentization design space by discussing the different roles a component
 can play within a Genode system.
 This can be the role of a device driver, protocol stack, resource
 multiplexer, runtime environment, and that of an application. By
 distinguishing those roles, it becomes possible to assess the possible
 security implications of each individual component.

 The versatility of a component-based system does not come from the
 existence of many components alone. Even more important is the
 composability of components. Components can be combined only if their
 interfaces match. To maximize composability, the number of interfaces
 throughout the system should be as low as possible, and all interfaces
 should be largely orthogonal to each other.
 Section Common session interfaces reviews Genode's common session
 interfaces.

 Components can be used in different ways depending on their configuration and
 their position within the component tree. Section Component configuration
 explains how a component obtains and processes its configuration.
 Section Component composition discusses the most prominent options of
 composing components.

 Device drivers

 A device driver translates a device interface to a Genode session interface.
 Figure img/device_driver illustrates the typical role of a device driver.

 	

 [image: img/device_driver]

	
 A network device driver provides a NIC service to a single client and uses core's IO-MEM and IRQ services to interact with the physical network adaptor.

 The device interface is defined by the device vendor and typically
 comprises the driving of state machines of the device, the
 notification of device-related events via interrupts, and the means to
 transfer data from and to the device.
 A device-driver component accesses the device interface via sessions to the
 core services IO_MEM, IO_PORT, and IRQ as described in
 Section Access to device resources (IO_MEM, IO_PORT, IRQ).

 In general, a physical device cannot safely be driven by multiple users at the
 same time. If multiple users accessed one device concurrently, the device
 state would eventually become inconsistent.
 A device driver should not attempt to multiplex a hardware device.
 Instead, to keep its complexity low, it should act as a server that serves
 only a single client per physical device.
 Whereas a device driver for a simple device usually accepts only one client,
 a device driver for a complex device with multiple sub devices (such as
 a USB driver) may hand out each sub device to a different client.

 A device driver should be largely void of built-in policy. If it merely
 translates the interface of a single device to a session interface, there is
 not much room for policy anyway. If, however, a device driver hands out
 multiple sub devices to different clients, the assignment of sub devices
 to clients must be subjected to a policy. In this case, the device driver
 should obtain policy information from its configuration as provided by
 the driver's parent.

 Platform driver

 There are three problems that are fundamentally important for running an
 operating system on modern hardware but that lie outside the scope of an
 ordinary device driver because they affect the platform as a whole rather
 than a single device. Those problems are the enumeration of devices, the
 discovery of interrupt routing, and the initial setup of the platform.

 Problem 1: Device enumeration

 Modern hardware platforms are rather complex and vary a lot. For example,
 the devices attached to the PCI bus of a PC are usually not known at the
 build time of the system but need to be discovered at run time. Technically,
 each individual device driver could probe its respective device at the
 PCI bus. But in the presence of multiple drivers, this approach would hardly
 work. First, the configuration interface of the PCI bus is a device itself.
 The concurrent access to the PCI configuration interface by multiple drivers
 would ultimately yield undefined behaviour. Second, for being able to interact
 directly with the PCI configuration interface, each driver would need to
 carry with it the functionality to interact with PCI.

 Problem 2: Interrupt routing

 On PC platforms with multiple processors, the use of legacy interrupts as
 provided by the Intel 8259 programmable interrupt controller (PIC) is not
 suitable because there is no way to express the
 assignment of interrupts to CPUs. To overcome the limitations of the PIC,
 Intel introduced the Advanced Programmable Interrupt Controller (APIC). The
 APIC, however, comes with a different name space for interrupt numbers, which
 creates an inconsistency between the numbers provided by the PCI configuration
 (interrupt lines) and interrupt numbers as understood by the APIC. The
 assignment of legacy interrupts to APIC interrupts is provided by the
 Advanced Configuration and Power Interface (ACPI) tables.
 Consequently, in order to support multi-processor PC platforms, the operating
 system needs to interpret those tables. Within a component-based system, we
 need to answer the question of which component is responsible to interpret the
 ACPI tables and how this information is applied to individual device
 drivers.

 Problem 3: Initial hardware setup

 In embedded systems, the interaction of the SoC (system on chip) with its surrounding
 peripheral hardware is often not fixed in hardware but rather a
 configuration issue. For example, the power supply and clocks of certain
 peripherals may be enabled by speaking an I2C protocol with a separate
 power-management chip. Also, the direction and polarity of the general-purpose
 I/O pins depends largely on the way how the SoC is used. Naturally, such
 hardware setup steps could be performed by the kernel. But this would require
 the kernel to become aware of potentially complex platform intrinsics.

 Central platform driver

 The natural solution to these problems is the introduction of a so-called
 platform driver, which encapsulates the peculiarities outlined above. On PC
 platforms, the role of the platform driver is executed by the ACPI driver. The
 ACPI driver provides an interface to the PCI bus in the form of a PCI service.
 Device drivers obtain the information about PCI devices by creating a PCI
 session at the ACPI driver. Furthermore, the ACPI driver provides an IRQ
 service that transparently applies the interrupt routing based on the
 information provided by the ACPI tables. Furthermore, the ACPI driver provides
 the means to allocate DMA buffers, which is further explained in Section
 Direct memory access (DMA) transactions.

 On ARM platforms, the corresponding component is named platform driver
 and provides a so-called platform service. Because of the large variety of
 ARM-based SoCs, the session interface for this service differs from platform
 to platform.

 Interrupt handling

 Most device drivers need to respond to sporadic events produced by the
 device and propagated to the CPU as interrupts. In Genode, a device-driver
 component obtains device interrupts via core's IRQ service introduced in
 Section Access to device resources (IO_MEM, IO_PORT, IRQ). On PC platforms,
 device drivers usually do not use core's IRQ service directly but rather
 use the IRQ service provided by the platform driver
 (Section Platform driver).

 Direct memory access (DMA) transactions

 Devices that need to transfer large amounts of data usually support a means
 to issue data transfers from and to the system's physical memory
 without the active participation of the CPU. Such transfers are called
 direct memory access (DMA) transactions. DMA transactions relieve the CPU
 from actively copying data between device registers and memory, optimize
 the throughput of the system bus by the effective use of burst transfers, and
 may even be used to establish direct data paths between devices.
 However, the benefits of DMA come at the risk of corrupting
 the physical memory by misguided DMA transactions.
 Because those DMA-capable devices can issue bus requests
 that target the physical memory directly while not involving the CPU altogether, such requests
 are naturally not subjected to the virtual-memory mechanism implemented in the
 CPU in the form of a memory-management unit (MMU).
 Figure img/no_iommu illustrates the problem. From the device's point of
 view, there is just physical memory.
 Hence, if a driver sets up a DMA transaction, e.g., if a disk driver wants to read a
 block from the disk, it programs the memory-mapped registers of the
 device with the address and size of a physical-memory buffer where it expects
 to receive the data.
 If the driver lives in a user-level component, as is the case for a
 Genode-based system, it still needs to know the physical address of the DMA
 buffer to program the device correctly.
 Unfortunately, there is nothing to prevent the driver from specifying any
 physical address to the device.
 A malicious driver could misuse the device to read and
 manipulate all parts of the physical memory, including the kernel.
 Consequently, device drivers and devices should ideally be trustworthy.
 However, there are several scenarios where this is ultimately not
 the case.

 	

 [image: img/no_iommu]

	
 The MMU restricts the access of physical memory pages by different components according to their virtual address spaces. However, direct memory accesses issued by the disk controller are not subjected to the MMU. The disk controller can access the entirety of the physical memory present in the system.

 Scenario 1: Direct device assignment to virtual machines

 When hosting virtual machines as Genode components, the direct assignment of
 a physical device such as a USB controller, a GPU, or a dedicated network
 card to the guest OS running in the virtual machine can be
 useful in two ways. First, if the guest OS is the sole user of the device,
 direct assignment of the device maximizes the I/O performance of the
 guest OS using the device. Second, the guest OS may be equipped with a
 proprietary device driver that is not present as a Genode component otherwise.
 In this case, the guest OS may be used as a runtime that executes the device
 driver, and thus, provides a driver interface to the Genode world. In both cases
 the guest OS should not be considered as trustworthy.
 On the contrary, it bears the risk of subverting the isolation between components.
 A misbehaving guest OS could issue DMA requests referring
 to the physical memory used by other components or even the kernel, and
 thereby break out of its virtual machine.

 Scenario 2: Firmware-driven attacks

 Modern peripherals such as wireless LAN adaptors, network cards, or GPUs
 employ firmware executed on the peripheral device. This firmware is executed
 on a microcontroller on the device, and is thereby not subjected to the
 policy of the normal operating system. Such firmware may either be built-in
 by the device vendor, or is loaded by the device driver at initialization
 time of the device. In both cases, the firmware tends to be a black box
 that remains obscure with the exception of the device vendor. Hidden functionality
 or vulnerabilities might be present in it. By the means of DMA transactions, such
 firmware has unlimited access to the system. For example, a back door
 implemented in the firmware of a network adaptor could look for
 special network packets to activate and control arbitrary spyware.
 Because malware embedded in the firmware of the device can neither be detected
 nor controlled by the operating system, both monolithic and microkernel-based
 operating systems are powerless against such attacks.

 Scenario 3: Bus-level attacks

 The previous examples misuse a DMA-capable device as a proxy to drive an
 attack. However, the system bus can be attacked directly with no hardware
 tinkering at all. There are ready-to-exploit interfaces that are featured on most
 PC systems. For example, most laptops come with PCMCIA / Express-Card slots,
 which allow expansion cards to access the system bus. Furthermore, serial bus
 interfaces, e.g., IEEE 1394 (Firewire), enable connected devices to indirectly
 access the system bus via the peripheral bus controller. If the bus controller
 allows the device to issue direct system bus requests by default, a connected
 device becomes able to gain control over the whole system.

 DMA transactions in component-based systems

 Direct memory access (DMA) of devices looks like the Achilles
 heel of component-based operating systems. The most compelling argument in
 favor of componentization is that by encapsulating each system component
 within a dedicated user-level address space, the system as a whole becomes more
 robust and secure compared to a monolithic operating-system kernel. In the
 event that one component fails due to a bug or an attack, other components
 remain unaffected. The prime example for such buggy components are, however, device
 drivers. By empirical evidence, those remain the most prominent trouble makers
 in today's operating systems, which suggests that the DMA loophole renders
 the approach of component-based systems largely ineffective.
 However, there are three counter arguments to this observation.

 	

 [image: img/iommu]

	
 An IOMMU arbitrates and virtualizes DMA accesses issued by a device to the RAM. Only if a valid IOMMU mapping exists for a given DMA access, the memory access is performed.

 First, by encapsulating each driver in a dedicated address space,
 classes of bugs that are unrelated to DMA remain confined in the
 driver component. In practice most driver-related problems stem from issues like
 memory leaks, synchronization problems, deadlocks, flawed driver logic, wrong
 state machines, or incorrect device-initialization sequences. For those classes
 of problems, the benefits of isolating the driver in a dedicated component
 still apply.

 Second, executing a driver largely isolated from other operating-system code
 minimizes the attack surface onto the driver. If the driver interface is
 rigidly small and well-defined, it is hard to compromise the driver by
 exploiting its interface.

 Third, modern PC hardware has closed the DMA loophole by incorporating
 so-called IOMMUs into the system. As depicted in Figure img/iommu, the IOMMU
 sits between the physical memory and the system bus where the devices are attached to.
 So each DMA request has to go through the IOMMU, which is not only able to arbitrate
 the access of DMA requests to the RAM but is also able to virtualize the address
 space per device. Similar to how an MMU confines each process running on the
 CPU within a distinct virtual address space, the IOMMU is able to confine each
 device within a dedicated virtual address space. To tell the different devices
 apart, the IOMMU uses the PCI device's bus-device-function triplet as unique
 identification.

 With an IOMMU in place, the operating system can effectively limit the scope
 of actions the given device can execute on the system. I.e., by restricting
 all accesses originating from a particular PCI device to the DMA buffers used
 for the communication, the operating system becomes able to detect and prevent
 any unintended bus accesses initiated by the device.

 When executed on the NOVA kernel, Genode subjects all DMA transactions to the
 IOMMU, if present. Section IOMMU support discusses the use of IOMMUs in
 more depth.

 Protocol stacks

 	

 [image: img/protocol_stack]

	
 Example of a protocol stack. The terminal provides the translation between the terminal-session interface (on the right) and the driver interfaces (on the left).

 A protocol stack translates one session interface to another (or the same)
 session interface. For example, a terminal component may provide a command-line
 application with a service for obtaining textual user input and
 for printing text.
 To implement this service, the terminal uses an input session and a
 framebuffer session. Figure img/protocol_stack depicts the relationship
 between the terminal, its client application, and the used drivers.
 For realizing the output of a stream of characters on
 screen, it implements a parser for escape sequences, maintains a state machine
 for the virtual terminal, and renders the pixel representation of characters
 onto the framebuffer. For the provisioning of textual user input, it responds
 to key presses reported by the input session, maintains the state of modifier
 keys, and applies a keyboard layout to the stream of incoming events.
 When viewed from the outside of the component, the terminal translates a terminal
 session to a framebuffer session as well as an input session.

 Similar to a device driver, a protocol stack typically serves a single client.
 In contrast to device drivers, however, protocol stacks are not bound to
 physical devices. Therefore, a protocol stack can be instantiated any number
 of times. For example, if multiple terminals are needed, one terminal
 component could be instantiated per terminal. Because each terminal uses an
 independent instance of the protocol stack, a bug in the protocol stack of one
 terminal does not affect any other terminal. However complex the implementation
 of the protocol stack may be, it is not prone to leaking information to another
 terminal because it is connected to a single client only. The leakage of
 information is constrained to interfaces used by the individual instance.
 Hence, in cases like this, the protocol-stack component is suitable
 for hosting highly complex untrusted code if such code cannot be avoided.

 Note that the example above cannot be generalized for all protocol stacks.
 There are protocol stacks that are critical for the confidentiality of
 information.
 For example, an in-band encryption component may translate plain-text network
 traffic to encrypted network traffic designated to be transported over a
 public network.
 Even though the component is a protocol stack, it may still be prone to
 leaking unencrypted information to the public network.

 Whereas protocol stacks are not necessarily critical for integrity and
 confidentiality, they are almost universally critical for availability.

 Resource multiplexers

 	

 [image: img/resource_multiplexer]

	
 A GUI server multiplexes the physical framebuffer and input devices among multiple applications.

 A resource multiplexer transforms one resource into a number of virtual
 resources. A resource is typically a session to a device driver. For
 example, a NIC-switch component may use one NIC session to a NIC driver
 as uplink and, in turn, provide a NIC service where each session represents
 a virtual NIC. Another example is a GUI server as depicted in Figure
 img/resource_multiplexer, which enables multiple applications to share
 the same physical framebuffer and input devices by presenting each
 client in a window or a virtual console.

 In contrast to a typical device driver or protocol stack that serves only a
 single client, a resource multiplexer is shared by potentially many clients.
 In the presence of untrusted clients besides security-critical clients,
 a resource multiplexer ultimately becomes a so-called multi-level component.
 This term denotes that the component is cross-cutting the security levels
 of all its clients. This has the following ramifications.

 	Covert channels

 	

 Because the component is a shared resource that is accessed by clients
 of different security levels, it must maintain the strict isolation
 between its clients unless explicitly configured otherwise. Hence, the
 component's client interface as well as the internal structure must be
 designed to prevent the leakage of information across clients. I.e.,
 two clients must never share the same namespace of server-side objects
 if such a namespace can be modified by the clients. For example, a window
 server that hands out global window IDs to its clients is prone to
 unintended information leakage because one client could observe the
 allocation of window IDs by another client. The ID allocation could be
 misused as a covert channel that circumvents security policies.
 In the same line, a resource multiplexer is prone to timing channels if
 the operations provided via its client interface depends on the behavior
 of other clients. For this reason, blocking RPC calls should be avoided
 because the duration of a blocking operation may reveal information about
 the internal state such as the presence of other clients of the resource
 multiplexer.

 	Complexity is dangerous

 	

 As a resource multiplexer is shared by clients of different security
 levels, the same considerations apply as for the OS kernel: high complexity
 poses a major risk for bugs. Such bugs may, in turn, result in the
 unintended flow of information between clients or degrade the quality of
 service for all clients. Hence, in terms of complexity, resource multiplexers
 must be as simple as possible.

 	Denial of service

 	

 The exposure of a resource multiplexer to untrusted and even malicious
 clients makes it a potential target for denial-of-service attacks.
 Some operations provided by the resource multiplexer may require the
 allocation of memory. For example, a GUI server may need memory for
 the book keeping of each window created by its clients.
 If the resource multiplexer performed such allocations from its own
 memory budget, a malicious client could trigger the exhaustion of
 server-side memory by creating new windows in an infinite loop.
 To mitigate this category of problems, a resource multiplexer should perform
 memory allocations exclusively from client-provided resources, i.e., using
 the session quota as provided by each client at session-creation time.
 Section Resource trading describes Genode's resource-trading mechanism
 in detail. In particular, resource multiplexers should employ heap
 partitioning as explained in Section Component-local heap partitioning.

 	Avoiding built-in policies

 	

 A resource multiplexer can be understood as a microkernel for a higher-level
 resource. Whereas a microkernel multiplexes or arbitrates the CPU and
 memory between multiple components, a resource multiplexer does the same
 for sessions.
 Hence, the principles for constructing microkernels equally apply for
 resource multiplexers.
 In the line of those principles, a resource multiplexer should ideally
 implement sole mechanisms but should be void of built-in policy.

 	Enforcement of policy

 	

 Instead of providing a built-in policy, a resource multiplexer obtains
 policy information from its configuration as supplied by its parent.
 The resource multiplexer must enforce the given policy. Otherwise, the
 security policy expressed in the configuration remains ineffective.

 Runtime environments and applications

 The component types discussed in the previous sections have in common that
 they deliberately lack built-in policy but act according to a policy
 supplied by their respective parents by the means of configuration.
 This raises the question where those policies should come from.
 The answer comes in the form of runtime environments and applications.

 	

 [image: img/runtime_environment]

	
 A runtime environment manages multiple child components.

 A runtime environment as depicted in Figure img/runtime_environment
 is a component that hosts child components.
 As explained in the Sections Recursive system structure and
 Resource trading, it is thereby able to exercise control over its children
 but is also responsible to manage the children's resources.
 A runtime environment controls its children in three ways:

 	Session routing

 	

 It is up to the runtime environment to decide how to route session
 requests originating from a child.
 The routing of sessions is discussed in Section Services and sessions.

 	Configuration

 	

 Each child obtains its configuration from its parent in the form of
 a ROM session as described in Section Component configuration.
 Using this mechanism, the runtime environment is able to feed
 policy information to its children. Of course, in order to make the policy
 effective, the respective child has to interpret and enforce the
 configuration accordingly.

 	Lifetime

 	

 The lifetime of a child ultimately depends on its parent. Hence, a
 runtime environment can destroy and possibly restart child components
 at any time.

 With regard to the management of child resources, a runtime environment can employ
 a large variety of policies using two principal approaches:

 	Quota management

 	

 Using the resource-trading mechanisms introduced in Section
 Resource trading, the runtime environment can assign resources to
 each child individually. Moreover, if a child supports the dynamic
 rebalancing protocol described in Section Dynamic resource balancing,
 the runtime environment may even change those assignments over the lifetime
 of its children.

 	Interposing services

 	

 Because the runtime environment controls the session routing of each
 child, it is principally able to interpose the child's use of any service
 including those normally provided by core such as
 PD (Section Protection domains (PD)), and
 CPU (Section Processing-time allocation (CPU)).
 The runtime environment may provide a locally implemented version of those
 session interfaces instead of routing session requests directly towards the
 core component.
 Internally, each session of such a local service may create a session to the
 real core service, thereby effectively wrapping core's sessions.
 This way, the runtime environment can not only observe the interaction of
 its child with core services but also implement custom resource-management
 strategies, for example, sharing one single budget among multiple children.

 Canonical examples of runtime environments are the init component that
 applies a policy according to its configuration, the noux runtime that
 presents itself as a Unix kernel to its children, a debugger that
 interposes all core services for the debugging target, or a virtual machine
 monitor.

 A typical application is a leaf node in the component tree that merely uses
 services. In practice, however, the boundary between applications and runtime
 environments can be blurry.
 As illustrated in Section Component composition, Genode fosters the
 internal split of applications into several components, thereby forming
 multi-component applications.
 From the outside, such a multi-component application appears as a leaf node of
 the component tree but internally, it employs an additional level of
 componentization by executing portions of its functionality in separate child
 components.
 The primary incentive behind this approach is the sandboxing of untrusted
 application functionality. For example, a video player may execute the video
 codec within a separate child component so that a bug in the complex video
 codec will not compromise the entire video-player application.

 Common session interfaces

 The core services described in Section Core - the root of the component tree
 principally enable the creation of a recursively structured system. However,
 their scope is limited to the few low-level resources provided by core, namely
 processing time, memory, and low-level device resources. Device drivers
 (Section Device drivers) and protocol stacks (Section Protocol stacks)
 transform those low-level resources into higher-level resources. Analogously
 to how core's low-level resources are represented by the session interfaces
 of core's services, higher-level resources are represented by the session
 interfaces provided by device drivers and protocol stacks. In principle,
 each device driver could introduce a custom session interface representing
 the particular device.
 But as discussed in the introduction of Chapter Components, a low
 number of orthogonal session interfaces is desirable to maximize the
 composability of components.
 This section introduces the common session interfaces that are used throughout
 Genode.

 Read-only memory (ROM)

 The ROM session interface makes a piece of data in the form of a dataspace
 available to the client.

 Session creation

 At session-creation time, the client specifies the name of a ROM module as
 session argument. One server may hand out different ROM modules depending
 on the name specified. Once a ROM session has been created, the client can
 request the capability of the dataspace that contains the ROM module.
 Using this capability and the region map of the client's PD session, the
 client can attach the ROM module to its local address space and thereby access
 the information. The client is expected to merely read the data, hence the
 name of the interface.

 ROM module updates

 In contrast to the intuitive assumption that read-only data is immutable,
 ROM modules may mutate during the lifetime of the session. The server may
 update the content of the ROM module with new versions. However, the server
 does not do so without the consent of the client. The protocol between
 client and server consists of the following steps.

 	

 The client registers a signal handler at the server to indicate that it
 is interested in receiving updates of the ROM module.

 	

 If the server has a new version of the ROM module, it does not immediately
 change the dataspace shared with the client. Instead, it maintains the
 new version separately and informs the client by submitting a signal to
 the client's signal handler.

 	

 The client continues working with the original version of the dataspace.
 Once it receives the signal from the server, it may decide to update the
 dataspace by calling the update function at the server.

 	

 The server responds to the update request. If the new version fits into
 the existing dataspace, the server copies the content of the new version
 into the existing dataspace and returns this condition with the reply of the
 update call. Thereby, the ROM session interface employs synchronous bulk
 transfers as described in Section Synchronous bulk transfer.

 	

 The client evaluates the result of the update call. If the new version
 did fit into the existing dataspace, the update is complete at this point.
 However, if the new version is larger than the existing dataspace, the
 client requests a new dataspace from the server.

 	

 Upon reception of the dataspace request, the server destroys the original
 dataspace (thereby making it invisible to the client), and returns
 the new version of the ROM module as a freshly allocated dataspace.

 	

 The client attaches the new dataspace capability to its local address
 space to access the new version.

 The protocol is designed in such a way that neither the client nor the server need
 to support updates. A server with no support for updating ROM modules such
 as core's ROM service simply ignores the registration of a signal handler
 by a client. A client that is not able to cope with ROM-module updates
 never requests the dataspace twice.

 However, if both client and server support the update protocol, the ROM
 session interface provides a means to propagate large state changes
 from the server to the client in a transactional way.
 In the common case where the new version of a ROM module fits into the same
 dataspace as the old version, the update does not require any memory
 mappings to be changed.

 Use cases

 The ROM session interface is used wherever data shall be accessed in a memory
 mapped fashion.

 	

 Boot time data comes in the form of the ROM sessions provided by core's
 ROM service. On some kernels, core exports kernel-specific information
 such as the kernel version in the form of special ROM modules.

 	

 If an executable binary is provided as a ROM module, the binary's text
 segment can be attached directly to the address space of a new process
 (Section Component creation).
 So multiple instances of the same component effectively share the same
 text segment.
 The same holds true for shared libraries. For this reason, executable
 binaries and shared libraries are requested in the form of ROM sessions.

 	

 Components obtain their configuration by requesting a ROM session for the
 "config" ROM module at their respective parent (Section Component configuration).
 This way, configuration information
 can be propagated using a simple interface with no need for a file
 system. Furthermore, the update mechanism allows the parent to dynamically
 change the configuration of a component during its lifetime.

 	

 As described in Section Publishing and subscribing, multi-component
 applications may obtain data models in the form of ROM sessions. In such
 scenarios, the ROM session's update mechanism is used to propagate
 model updates in a transactional way.

 Report

 The report session interface allows a client to report its internal state to
 the outside using synchronous bulk transfers
 (Section Synchronous bulk transfer).

 Session creation

 At session-creation time, the client specifies a label and a buffer size.
 The label aids the routing of the session request but may also be used
 to select a policy at the report server. The buffer size determines the
 size of the dataspace shared between the report server and its client.

 Use cases

 	

 Components may use report sessions to export their internal state for
 monitoring purposes or for propagating exceptional events.

 	

 Device drivers may report information about detected devices or other
 resources. For example, a bus driver may report a list of devices attached
 on the bus, or a wireless driver may report the list of available networks.

 	

 In multi-component applications, components that provide data models
 to other components may use the report-session interface to propagate
 model updates.

 Terminal and UART

 The terminal session interface provides a bi-directional communication
 channel between client and server using synchronous bulk transfers
 (Section Synchronous bulk transfer). It is primarily meant to be used for textual
 interfaces but may also be used to transfer other serial streams of
 data.

 The interface uses the two RPC functions read and write to arbitrate
 the access to a shared-memory communication buffer between client and server
 as described in Section Synchronous bulk transfer. The read function
 never blocks. When called, it copies new input into the communication buffer
 and returns the number of new characters. If there is no new input, it
 returns 0. To avoid the need to poll for new input at the client side, the
 client can register a signal handler that gets notified upon the arrival of
 new input. The write function takes the number of to-be-written characters
 as argument. The server responds to this function by processing the specified
 amount of characters from the communication buffer.

 Besides the actual read and write operations, the terminal supports the
 querying of the number of new available input events (without reading it) and the
 terminal size in rows and columns.

 Session creation

 At session-creation time, the terminal session may not be ready to use.
 For example, a TCP terminal session needs an established TCP connection first.
 In such a situation, the use of the terminal session by a particular client
 must be deferred until the session becomes ready.
 Delaying the session creation at the server side is not an option because this
 would render the server's entry point unavailable for all other clients
 until the TCP connection is ready.
 Instead, the client blocks until the server delivers a connected signal. This signal
 is emitted when the session becomes ready to use. The client waits for this
 signal right after creating the session.

 Use cases

 	

 Device drivers that provide streams of characters in either direction.

 	

 A graphical terminal.

 	

 Transfer of streams of data over TCP (using the TCP terminal).

 	

 Writing streams of data to a file (using a file terminal).

 	

 User input and output of traditional command-line based software, i.e.,
 programs executed in the noux runtime environment.

 	

 Multiplexing of multiple textual user interfaces (using the terminal-mux
 component).

 	

 Headless operation and management of subsystems (using the CLI monitor).

 UART

 The UART session interface complements the terminal session interface with
 additional control functions, e.g., for setting the baud rate. Because UART
 sessions are compatible to terminal sessions, a UART device driver can be
 used as both UART server and terminal server.

 Input

 The input session interface is used to communicate low-level user-input
 events from the server to the client using synchronous bulk transfers
 (Section Synchronous bulk transfer). Such an event can be of one of the
 following types:

 	press or release

 	

 of a button or key. Each physical button (such as a mouse
 button) or key (such as a key on a keyboard) is represented by a unique
 value. At the input-session level, key events are reported as raw hardware
 events. They are reported without a keyboard layout applied and without any
 interpretation of meta keys (like shift, alt, and control). This gives the
 client the flexibility to handle arbitrary combinations of keys.

 	relative motion

 	

 of pointer devices such as a mouse. Such events are
 generated by device drivers.

 	absolute motion

 	

 of pointer devices such as a touch screen or graphics
 tablet. Furthermore absolute motion events are generated by virtual
 input devices such as the input session provided by a GUI server.

 	wheel motion

 	

 of scroll wheels in vertical and horizontal directions.

 	focus

 	

 of the session. Focus events are artificially generated by servers
 to indicate a gained or lost keyboard focus of the client. The client
 may respond to such an event by changing its graphical representation
 accordingly.

 	leave

 	

 of the pointer position. Leave events are artificially generated
 by servers to indicate a lost pointer focus.

 	character

 	

 associated with a pressed key. This type of event is usually
 not generated by low-level device drivers but by a higher-level
 service - like the input-filer component - that applies keyboard-layout
 rules to sequences of low-level events. Each character event encodes a
 single UTF-8 symbol, which is ready to be consumed by components that
 operate on textual input rather than low-level hardware events.

 Use cases

 	

 Drivers for user-input devices play the roles of input servers.

 	

 Providing user input from a GUI server to its clients, e.g., the
 interface of the nitpicker GUI server provides an input session as part
 of the server's interface.

 	

 Merging multiple streams of user input into one stream (using an input
 merger).

 	

 Virtual input devices can be realized as input servers that generate
 artificial input events.

 Framebuffer

 The framebuffer session interface allows a client to supply pixel data to
 a framebuffer server such as a framebuffer driver or a virtual framebuffer
 provided by a GUI server. The client obtains access to the framebuffer as
 a dataspace, which is shared between client and server. The client may
 update the pixels within the dataspace at any time. Once a part of the
 framebuffer has been updated, the client informs the server by calling a
 refresh RPC function. Thereby, the framebuffer session interface employs a
 synchronous bulk transfer mechanism (Section Synchronous bulk transfer).

 Session creation

 In general, the screen mode is defined by the framebuffer server, not the
 client. The mode may be constrained by the physical capabilities of the
 hardware or depend on the driver configuration. Some framebuffer servers,
 however, may take a suggestion by the client into account. At session-creation
 time, the client may specify a preferred mode as session argument. Once the
 session is constructed, however, the client must request the actually used
 mode via the mode RPC function.

 Screen-mode changes

 The session interface supports dynamic screen-mode changes during the lifetime
 of the session using the following protocol:

 	

 The client may register a signal handler using the mode_sigh RPC function.
 This handler gets notified in the event of server-side mode changes.

 	

 Similarly to the transactional protocol used for updating ROM modules
 (Section Read-only memory (ROM)), the dataspace shared between client and
 server stays intact until the client acknowledges the mode change by calling
 the mode RPC function.

 	

 The server responds to the mode function by applying the new mode and
 returns the corresponding mode information to the client. This step may
 destroy the old framebuffer dataspace.

 	

 The client requests a new version of the frambuffer dataspace by calling
 the dataspace RPC function and attaches the dataspace to its local
 address space.
 Note that each subsequent call of the dataspace RPC function may result
 in the replacement of the existing dataspace by a new dataspace. Hence,
 calling dataspace twice may invalidate the dataspace returned from the
 first call.

 Frame-rate synchronization

 To enable framebuffer clients to synchronize their operations with the display
 frequency, a client can register a handler for receiving
 display-synchronization events as asynchronous notifications
 (Section Asynchronous notifications).

 Use cases

 	

 Framebuffer device drivers are represented as framebuffer servers.

 	

 A virtual framebuffer may provide both the framebuffer and input session
 interfaces by presenting a window on screen. The resizing of the window
 may be reflected to the client as screen-mode changes.

 	

 A filter component requests a framebuffer session and, in turn, provides
 a framebuffer session to a client. This way, pixel transformations can be
 applied to pixels produced by a client without extending the client.

 Nitpicker GUI

 	

 [image: img/nitpicker_session]

	
 A nitpicker session aggregates a framebuffer session, an input session, and a session-local view stack.

 The nitpicker session interface combines an input session and a
 framebuffer session into a single session (Figure img/nitpicker_session).
 Furthermore, it supplements the framebuffer session with the notion of views,
 which allows the creation of flexible multi-window user interfaces.
 The interface is generally suited for resource multiplexers of the framebuffer and input
 sessions.
 A view is a rectangular area on screen that displays a portion of the client's
 virtual framebuffer. The position, size, and viewport of each view is defined
 by the client. Views can overlap, thereby creating a view stack. The stacking
 order of the views of one client can be freely defined by the client.

 The size of the virtual framebuffer can be freely defined by the client
 but the required backing store must be provided in the form of session
 quota.
 Clients may request the screen mode of the physical framebuffer and are
 able to register a signal handler for mode changes of the physical
 framebuffer. This way, nitpicker clients are able to adapt themselves to
 changing screen resolutions.

 Use cases

 	

 The nitpicker GUI server allows multiple GUI applications to share a
 pair of a physical framebuffer session and an input session in a secure way.

 	

 A window manager implementing the nitpicker session interface may
 represent each view as a window with window decorations and a placement
 policy. The resizing of a window by the user is reflected to the client as
 a screen-mode change.

 	

 A loader (Section Loader) virtualizes the nitpicker session interface for
 the loaded subsystem.

 Platform

 The platform session interface (on ARM-based devices) and the PCI session
 interface (on x86-based machines) provide the client with access to the
 devices present on the hardware platform. See Section Platform driver
 for more information on the role of platform drivers.

 Block

 The block session interface allows a client to access a storage server at
 the block level. The interface is based on a packet stream
 (Section Asynchronous bulk transfer - packet streams). Each packet
 represents a block-access command, which can be either read or write.
 Thanks to the use of the packet-stream mechanism, the client can issue
 multiple commands at once and thereby hide access latencies by submitting
 batches of block requests. The server acknowledges each packet after
 completing the corresponding block-command operation.

 The packet-stream interface for submitting commands is complemented by
 the info RPC function for querying the properties of the block device, i.e.,
 the supported operations, the block size, and the block count. Furthermore,
 a client can call the sync RPC function to flush caches at the block server.

 Session creation

 At session-creation time, the client can dimension the size of the
 communication buffer as session argument. The server allocates the shared
 communication buffer from the session quota.

 Use cases

 	

 Block-device drivers implement the block-session interface.

 	

 The part-block component requests a single block session, parses a
 partition table, and hands out each partition as a separate block session
 to its clients. There can be one client for each partition.

 	

 File-system servers use block sessions as their back end.

 Regulator

 The regulator session represents an adjustable value in the hardware
 platform. Examples are runtime-configurable frequencies and voltages.
 The interface is a plain RPC interface.

 Timer

 The timer session interface provides a client with a session-local time
 source. A client can use it to schedule timeouts that are delivered as
 signals to a previously registered signal handler. Furthermore, the client
 can request the elapsed number of milliseconds since the creation of the
 timer session.

 NIC

 A NIC session represents a network interface that operates at network-packet
 level. Each session employs two independent packet streams (Section
 Asynchronous bulk transfer - packet streams), one for receiving network
 packets and one for transmitting network packets. Furthermore, the client
 can query the MAC address of the network interface.

 Session creation

 At session-creation time, the communication buffers of both packet streams are
 dimensioned via session arguments. The communication buffers are allocated by
 the server using the session quota provided by the client.

 Use cases

 	

 Network drivers are represented as NIC servers.

 	

 A NIC switch uses one NIC session connected to a NIC driver, and provides
 multiple virtual NIC interfaces to its clients by managing a custom
 name space of virtual MAC addresses.

 	

 A TCP/IP stack uses a NIC session as back end.

 Audio output

 The audio output interface allows for the transfer of audio data from the
 client to the server.
 One session corresponds to one channel. I.e., for
 stereo output, two audio-out sessions are required.

 Session construction

 At session-construction time, the client specifies the type of channel
 (e.g., front left) as session argument.

 Interface design

 For the output of streamed audio data, a codec typically decodes a relatively
 large portion of an audio stream and submits the sample data to a mixer. The
 mixer, in turn, mixes the samples of multiple sources and forwards the result
 to the audio driver. The codec, the mixer, and the
 audio driver are separate components. By using large buffer sizes between
 them, there is only very little context-switching overhead. Also, the driver
 can submit large buffers of sample data to the sound device without any
 further intervention needed.
 In contrast, sporadic sounds are used to inform the user about an immediate
 event. An example is the acoustic feedback to certain user input in games.
 The user ultimately expects that such sounds are played back without much
 latency. Otherwise the interactive experience would suffer.
 Hence, using large buffers between the audio source, the mixer, and the driver
 is not an option.
 The audio-out session interface was specifically designed to
 accommodate both corner cases of audio output.

 	

 [image: img/audio_out_session]

	
 The time-driven audio-out session interface uses shared memory to transfer audio frames and propagate progress information.

 Similarly to the packet-stream mechanism described in Section
 Asynchronous bulk transfer - packet streams,
 the audio-out session interface depicted in Figure img/audio_out_session
 employs a combination of shared memory and asynchronous notifications.
 However, in contrast to the packet-stream mechanism, it has no notion of
 ownership of packets. When using the normal packet-stream protocol,
 either the source or the sink is in charge of handling a given packet at a
 given time, not both. The audio-out session interface weakens this notion of
 ownership by letting the source update once submitted audio frames even after
 submitting them.
 If there are solely continuous streams of audio arriving at the mixer,
 the mixer can mix those large batches of audio samples at once and pass the
 result to the driver.

 	

 [image: img/mixer_streaming]

	
 The mixer processes batches of incoming audio frames from multiple sources.

 Now, if a sporadic sound comes in, the mixer checks the
 current output position reported by the audio driver, and re-mixes those
 portions that haven't been played back yet by incorporating the sporadic sound.
 So the buffer consumed by the driver gets updated with new data.

 	

 [image: img/mixer_sporadic]

	
 A sporadic occurring sound prompts the mixer to remix packets that were already submitted in the output queue.

 Besides the way of how packets are populated with data, the second
 major difference to the packet-stream mechanism is its time-triggered
 mode of operation. The
 driver produces periodic signals that indicate the completeness of a
 played-back audio packet. This signal triggers the mixer to become active,
 which in turn serves as a time base for its clients. The current playback
 position is denoted alongside the sample data as a field in the memory buffer
 shared between source and sink.

 Use cases

 	

 The audio-out session interface is provided by audio drivers.

 	

 An audio mixer combines incoming audio streams of multiple clients into
 one audio stream transferred to an audio driver.

 File system

 The file-system session interface provides the client with a storage
 facility at the file and directory-level. Compared to the block session
 interface (Section Block), it operates on a higher abstraction level
 that is suited for multiplexing the storage device among multiple clients.
 Similar to the block session, the file-system session employs a single
 packet stream interface
 (Section Asynchronous bulk transfer - packet streams) for issuing read
 and write operations. This way, read and write requests can be processed
 in batches and even out of order.

 In contrast to read and write operations that carry potentially large amounts
 of payload, the directory functions provided by the file-system session
 interface are synchronous RPC functions. Those functions are used for
 opening, creating, renaming, moving, deleting, and querying files,
 directories and symbolic links.

 The directory functions are complemented with an interface for receiving
 notifications upon file or directory changes using asynchronous notifications.

 Use cases

 	

 A file-system operates on a block session to provide file-system sessions to
 its clients.

 	

 A RAM file system keeps the directory structure and files in memory and
 provides file-system sessions to multiple clients. Each session may be
 restricted in different ways (such as the root directory as visible by
 the respective client, or the permission to write). Thereby the clients
 can communicate using the RAM file system as a shared storage facility
 but are subjected to an information-flow policy.

 	

 A file-system component may play the role of a filter that transparently
 encrypts the content of the files of its client and stores the
 encrypted files at another file-system server.

 	

 A pseudo file system may use the file-system interface as an hierarchic
 control interface. For example, a trace file system provides a pseudo
 file system as a front end to interact with core's TRACE service.

 Loader

 The loader session interface allows clients to dynamically create Genode
 subsystems to be hosted as children of a loader service. In contrast to a
 component that is spawning a new subsystem as an immediate child, a loader
 client has very limited control over the spawned subsystem. It can merely
 define the binaries and configuration to start, define the position where the
 loaded subsystem will appear on screen, and kill the subsystem. But it is not
 able to interfere with the operation of the subsystem during its lifetime.

 Session creation

 At session-creation time, the client defines the amount of memory to be
 used for the new subsystem as session quota. Once the session is established,
 the client equips the loader session with ROM modules that will be presented
 to the loaded subsystem. From the perspective of the subsystem, those ROM
 modules can be requested in the form of ROM sessions from its parent.

 Visual integration of the subsystem

 The loaded subsystem may implement a graphical user interface by creating
 a nitpicker session (Section Nitpicker GUI). The loader responds to such a
 session request by providing a locally implemented session. The loader
 subordinates the nitpicker session of the loaded subsystem to a nitpicker
 view (called parent view) defined by the loader client.
 The loader client can use the loader session interface to position the view
 relative to the parent-view position. Thereby, the graphical user interface
 of the loaded subsystem can be seamlessly integrated with the user interface
 of the loader client.

 Use case

 The most illustrative use case is the execution of web-browser plugins where
 neither the browser trusts the plugin nor the plugin trusts the browser
 (Section Ceding the parenthood).

 Component configuration

 By convention, each component obtains its configuration in the form of a
 ROM module named "config". The ROM session for this ROM module is provided
 by the parent of the component. For example, for the init component, which is
 the immediate child of core, its "config" ROM module is provided by core's
 ROM service. Init, in turn, provides a different config ROM module to each
 of its children by a locally implemented ROM service per child.

 Configuration format

 In principle, being a mere ROM module, a component configuration can come in
 an arbitrary format. However, throughout Genode, there exists the convention
 to use XML as syntax and wrap the configuration within a <config> node.
 The definition of sub nodes of the configuration depends on the respective
 component.

 Server-side policy selection

 Servers that serve multiple clients may apply a different policy
 to each client.
 In general, the policy may be defined by the session arguments aggregated on
 the route of the session request as explained in Section
 Services and sessions.
 However, in the usual case, the policy is dictated by the common parent
 of client and server. In this case, the parent may propagate its policy
 as the server's configuration and deliver a textual label as session argument
 for each session requested at the server. The configuration contains a
 list of policies whereas the session label is used as a key to select
 the policy from the list. For example, the following snippet configures
 a RAM file system with different policies.

 <config>
 <!-- constrain sessions according to their labels -->
 <policy label="noux -> root" root="/" />
 <policy label="noux -> home" root="/home/user" />
 <policy label="noux -> tmp" root="/tmp" writeable="yes" />
 </config>

 Each time a session is created, the server matches the supplied session label
 against the configured policies. Only if a policy matches, the parameters of
 the matching policy come into effect. The way how the session label is
 matched against the policies depends on the implementation of the server.
 However, by convention, servers usually select the policy depending on the
 attributes label, label_prefix, and label_suffix. If present, the
 label attribute must perfectly match the session label whereby the
 suffix and prefix counterparts allow for partially matching the session label.
 If multiple <policy> nodes match at the server side, the most specific
 policy is selected. Exact matches are considered as most specific, prefixes as
 less specific, and suffixes as least specific. If multiple prefixes or
 suffixes match, the longest is considered as the most specific.
 If multiple policies have the same label, the selection is undefined. This is
 a configuration error.

 Dynamic component reconfiguration at runtime

 As described in Section Read-only memory (ROM), a ROM module can be updated
 during the lifetime of the ROM session. This principally enables a parent
 to dynamically reconfigure a child component without the need to restart it.
 If a component supports its dynamic reconfiguration, it installs a signal
 handler at its "config" ROM session. Each time, the configuration changes,
 the component will receive a signal. It responds to such a signal by obtaining
 the new version of the ROM module using the steps described in
 Section Read-only memory (ROM) and applying the new configuration.

 Component composition

 Genode provides a playground for combining components in many different ways.
 The best composition of components often depends on the goal of the system
 integrator. Among possible goals are the ease of use for the end user, the
 cost-efficient reuse of existing software, and good application
 performance. However, the most prominent goal is the mitigation of security
 risks. This section presents composition techniques that leverage
 Genode's architecture to dramatically reduce the trusted computing base of
 applications and to solve rather complicated problems in surprisingly easy
 ways.

 The figures presented throughout this section use a simpler nomenclature
 than the previous sections. A component is depicted as box. Parent-child
 relationships are represented as light-gray arrows. A session between
 a client and a server is illustrated by a dashed arrow pointing to the
 server.

 [image: img/simplified_nomenclature]

 Sandboxing

 The functionality of existing applications and libraries is often worth
 reusing or economically downright infeasible to reimplement. Examples
 are PDF rendering engines, libraries that support commonly used video and
 audio codecs, or libraries that decode hundreds of image formats.

 However, code of such rich functionality is inherently complex and must be
 assumed to contain security flaws. This is empirically evidenced by the
 never ending stream of security exploits targeting the decoders of data
 formats. But even in the absence of bugs, the processing of data by
 third-party libraries may have unintended side effects. For example,
 a PDF file may contain code that accesses the file system, which the user
 of a PDF reader may not expect. By linking such a third-party library to a
 security-critical application, the application's security is seemingly traded
 against the functional value that the library offers.

 	

 [image: img/qt_avplay]

	
 A video player executes the video and audio codecs inside a dedicated sandbox.

 Fortunately, Genode's architecture principally allows every component to
 encapsulate untrusted functionality in child components. So instead of
 directly linking a third-party library to an application, the application
 executes the library code in a dedicated sub component. By imposing a
 strict session-routing policy onto the component, the untrusted code is
 restricted to its sandbox. Figure img/qt_avplay shows a video player as
 a practical example of this approach.

 The video player uses the nitpicker GUI server to present a user interface
 with the graphical controls of the player. Furthermore, it has access to
 a media file containing video and audio data.
 Instead of linking the media-codec library (libav) directly to the video-player
 application, it executes the codec as a child component. Thereby the
 application effectively restricts the execution environment of the codec
 to only those resources that are needed by the codec. Those resources are
 the media file that is handed out to the codec as a ROM module, a facility
 to output video frames in the form of a framebuffer session, and a facility
 to output an audio stream in the form of an audio-out session.

 In order to reuse as much code as possible, the video player executes an
 existing example application called avplay that comes with the codec library
 as child component.
 The avplay example uses libSDL as back end for video and audio
 output and responds to a few keyboard shortcuts for controlling the video
 playback such as pausing the video. Because there exists a Genode version
 of libSDL, avplay can be executed as a Genode component with no modifications.
 This version of libSDL requests a framebuffer session (Section Framebuffer)
 and an audio-out session (Section Audio output) to perform the video and
 audio output.
 To handle user input, libSDL opens an input session (Section Input).
 Furthermore, it opens a ROM session for obtaining a configuration. This
 configuration parametrizes the audio back end of libSDL.
 Because avplay is a child of the video-player application, all those session
 requests are directed to the application. It is entirely up to the application
 how to respond to those requests. For accommodating the
 request for a frambuffer session, the application creates a second nitpicker
 session, configures a virtual framebuffer, and embeds this virtual framebuffer
 into its GUI. It keeps the nitpicker session capability for itself and
 merely hands out the virtual framebuffer's session capability to avplay.
 For accommodating the request for the input session, it hands out a
 capability to a locally-implemented input session. Using this input session,
 it becomes able to supply artificial input events to avplay. For example,
 when the user clicks on the play button of the application's GUI, the
 application would submit a sequence of press and release events to the
 input sessions, which appear to avplay as the keyboard shortcut for starting
 the playback.
 To let the user adjust the audio parameters of libSDL during playback,
 the video-player application dynamically changes the avplay configuration
 using the mechanism described in
 Section Dynamic component reconfiguration at runtime. As a response to a
 configuration update, libSDL's audio back end picks up the changed
 configuration parameters and adjusts the audio playback accordingly.

 By sandboxing avplay as a child component of the video player, a bug in
 the video or audio codecs can no longer compromise the application. The
 execution environment of avplay is tailored to the needs of the codec.
 In particular, it does not allow the codec to access any files or the
 network. In the worst case, if avplay becomes corrupted, the possible
 damage is restricted to producing wrong video or audio frames but a corrupted
 codec can neither access any of the user's data nor can it communicate to the
 outside world.

 Component-level and OS-level virtualization

 The sandboxing technique presented in the previous section tailors the
 execution environment of untrusted third-party code by applying an
 application-specific policy to all session requests originating from the
 untrusted code. However, the tailoring of the execution environment by
 the parent can even go a step further by providing the all-encompassing
 virtualization of all services used by the child, including core's services
 such as PD, CPU, and LOG.
 This way, the parent can not just tailor the execution environment of a child
 but completely define all aspects of the child's execution. This clears
 the way for introducing custom operating-system interfaces at any position
 within the component tree, or for monitoring the behavior of subsystems.

 	

 [image: img/noux]

	
 The Noux runtime provides a Unix-like interface to its children.

 Introducing a custom OS interface

 By implementing all session interfaces normally provided by core, a runtime
 environment becomes able to handle all low-level interactions of the
 child with core. This includes the allocation of memory using the PD service,
 the spawning and controlling of threads using the CPU service, and the
 management of the child's address space using the PD service.

 The noux runtime illustrated in Figure img/noux is the canonical example of
 this approach.
 It appears as a Unix kernel to its children and thereby enables the
 use of Unix software on top of Genode.
 Normally, several aspects of Unix would contradict with Genode's architecture:

 	

 The Unix system-call interface supports files and sockets as first-level
 citizens.

 	

 There is no global virtual file system in Genode.

 	

 Any Unix process can allocate memory as needed. There is no necessity for explicit
 assignment of memory resources to Unix processes.

 	

 Processes are created by forking existing processes. The new process
 inherits the roles (in the form of open file descriptors) of the
 forking process.

 Noux resolves these contradictions by providing
 the interfaces of core's low-level services alongside a custom RPC interface.
 By providing a custom noux session interface to its children, noux can
 accommodate all kinds of abstractions including the notion of files and
 sockets.
 Noux maintains a virtual file system that appears to be global among all the
 children of the noux instance.
 Since noux handles all the children's interaction with the PD service, it can
 hand out memory allocations from a pool of memory shared among all children.
 Finally, because noux observes all the interactions of each child with the
 PD service, it is able to replay the address-space layout of an existing
 process to a new process when fork is called.

 Monitoring the behavior of subsystems

 Besides hosting arbitrary OS personalities as a subsystem, the interception
 of core's services allows for the all-encompassing monitoring of subsystems
 without the need for special support in the kernel. This is useful for
 failsafe monitoring or for user-level debugging.

 	

 [image: img/no_gdb]

	
 Each Genode component is created out of basic resources provided by core.

 As described in Section Component creation, any Genode component is
 created out of low-level resources in the form of sessions provided by core.
 Those sessions include at least a PD session, a CPU session, and a ROM session
 with the executable binary as depicted in Figure img/no_gdb. In addition to
 those low-level sessions, the component may interact with sessions provided by
 other components.

 For debugging a component, a debugger would need a way to inspect the
 internal state of the component. As the complete internal state is usually
 known by the OS kernel only, the traditional approach to user-level debugging
 is the introduction of a debugging interface into the kernel. For example,
 Linux has the ptrace mechanism and several microkernels of the L4 family
 come with built-in kernel debuggers. Such a debugging interface, however,
 introduces security risks. Besides increasing the complexity of the kernel,
 access to the kernel's debugging mechanisms needs to be strictly subjected to a
 security policy. Otherwise any program could use those mechanisms to inspect
 or manipulate other programs.
 Most L4 kernels usually exclude debugging features in production builds
 altogether.

 	

 [image: img/gdb_monitor]

	
 By intercepting all sessions to core's services, a debug monitor obtains insights into the internal state of its child component. The debug monitor, in turn, is controlled from a remote debugger.

 In a Genode system, the component's internal state is represented in the
 form of core sessions. Hence, by intercepting those sessions of a child,
 a parent can monitor all interactions of the child with core and thereby
 record the child's internal state. Figure img/gdb_monitor shows a
 scenario where a debug monitor executes a component (debugging target) as a
 child while intercepting all sessions to core's services. The interception
 is performed by providing custom implementations of core's session interfaces
 as locally implemented services. Under the hood, the local services realize
 their functionality using actual core sessions. But by sitting in the middle
 between the debugging target and core, the debug monitor can observe the
 target's internal state including the memory content, the virtual
 address-space layout, and the state of all threads running inside the
 component. Furthermore, since the debug monitor is in possession of all the
 session capabilities of the debugging target, it can manipulate it in
 arbitrary ways. For example, it can change thread states (e.g., pausing the
 execution or enable single-stepping) and modify the memory content
 (e.g., inserting breakpoint instructions). The figure shows that those
 debugging features can be remotely controlled over a terminal connection.

 	

 [image: img/on_target_gdb]

	
 The GNU debugger is executed within a dedicated noux instance, thereby providing an on-target debugging facility.

 Using this form of component-level virtualization, a problem that used to
 require special kernel additions in traditional operating systems
 can be solved via Genode's regular interfaces.
 Furthermore, Figure img/on_target_gdb shows that by
 combining the solution with OS-level virtualization, the connection
 to a remote debugger can actually be routed to an on-target instance of the
 debugger, thereby enabling on-target debugging.

 Interposing individual services

 The design of Genode's fundamental services, in particular resource
 multiplexers, is guided by the principle of minimalism. Because such
 components are security critical, complexity must be avoided.
 Functionality is added to such components only if it cannot be provided
 outside the component.

 However, components like the nitpicker GUI server are often confronted with
 feature requests. For example, users may want to move a window on screen by
 dragging the window's title bar. Because nitpicker has no notion of windows or
 title bars, such functionality is not supported. Instead, nitpicker moves
 the burden to implement window decorations to its clients. However, this
 approach sacrifices functionality that is taken for granted on modern
 graphical user interfaces. For example, the user may want to switch the
 application focus using a keyboard shortcut or perform window operations and
 the interactions with virtual desktops in a consistent way. If each
 application implemented the functionality of virtual desktops individually,
 the result would hardly be usable. For this reason, it is tempting to move
 window-management functionality into the GUI server and to accept the
 violation of the minimalism principle.

 The nitpicker GUI server is not the only service challenged by feature
 requests. The problem is present even at the lowest-level services provided
 by core. Core's region-map mechanism is used to manage the virtual address spaces of
 components via their respective PD sessions. When a dataspace is attached to a
 region map, the region map picks a suitable virtual address range where the
 dataspace will be made visible in the virtual address space.
 The allocation strategy depends on several factors such as alignment constraints
 and the address range that fits best. But eventually, it is deterministic.
 This contradicts the common wisdom that address spaces shall be
 randomized. Hence core's PD service is challenged with the request for adding
 address-space randomization as a feature. Unfortunately, the addition of
 such a feature into core raises two issues.
 First, core would need to have a source of good random numbers. But core
 does not contain any device drivers where to draw entropy from.
 With weak entropy, the randomization might be not random enough. In this case,
 the pretension of a security mechanism that is actually ineffective may be
 worse than not having it in the first place.
 Second, the feature would certainly increase the complexity of core.
 This is acceptable for components that potentially benefit from the added
 feature, such as outward-facing network applications. But the complexity
 eventually becomes part of the TCB of all components including those that do
 not benefit from the feature.

 	

 [image: img/nitpicker_wm]

	
 The nitpicker GUI accompanied with a window manager that interposes the nitpicker session interface for the applications on the right. The applications on the left are still able to use nitpicker directly and thereby avoid the complexity added by the window manager.

 The solution to those kind of problems is the enrichment of existing servers
 by interposing their sessions. Figure img/nitpicker_wm shows a window
 manager implemented as a separate component outside of nitpicker. Both the
 nitpicker GUI server and the window manager provide the nitpicker session
 interface. But the window manager enriches the semantics of the interface
 by adding window decorations and a window-layout policy. Under the hood,
 the window manager uses the real nitpicker GUI server to implement its
 service. From the application's point of view, the use of either service
 is transparent. Security-critical applications can still be routed directly
 to the nitpicker GUI server. So the complexity of the window manager comes
 into effect only for those applications that use it.

 The same approach can be applied to the address-space randomization problem.
 A component with access to good random numbers may provide a randomized
 version of core's PD service. Outward-facing components can benefit from this
 security feature by having their PD session requests routed to this component
 instead of core.

 Ceding the parenthood

 When using a shell to manage subsystems, the complexity of the shell
 naturally becomes a security risk. A shell can be a text-command interpreter,
 a graphical desktop shell, a web browser that launches subsystems
 as plugins, or a web server that provides a remote administration interface.
 What all those kinds of shells have in common is that they contain
 an enormous amount of complexity that can be attributed to convenience.
 For example, a textual shell usually depends on libreadline, ncurses, or similar
 libraries to provide a command history and to deal with the peculiarities of
 virtual text terminals. A graphical desktop shell is even worse because
 it usually depends on a highly complex widget toolkit, not to mention
 using a web browser as a shell.
 Unfortunately, the functionality provided by these programs cannot be
 dismissed as it is expected by the user. But the high complexity of the
 convenience functions fundamentally contradicts the security-critical
 role of the shell as the common parent of all spawned subsystems. If the
 shell gets compromised, all the spawned subsystems will suffer.

 	

 [image: img/arora_plugin]

	
 A web browser spawns a plugin by ceding the parenthood of the plugin to the trusted loader service.

 The risk of such convoluted shells can be mitigated by moving the parent role
 for the started subsystems to another component, namely a loader service.
 In contrast to the shell, which should be regarded as untrusted due it its
 complexity, the loader is a small component that is orders of magnitude less
 complex. Figure img/arora_plugin shows a scenario where a web browser is
 used as a shell to spawn a Genode subsystem.
 Instead of spawning the subsystem as the child of the browser, the browser
 creates a loader session. Using the loader-session interface described
 in Section Loader, it can initially import the to-be-executed
 subsystem into the loader session and kick off the execution of the subsystem.
 However, once the subsystem is running, the browser can no longer interfere
 with the subsystem's operation. So security-sensitive information processed within
 the loaded subsystem are no longer exposed to the browser. Still, the lifetime
 of the loaded subsystem depends on the browser. If it decides to close
 the loader session, the loader will destroy the corresponding subsystem.

 By ceding the parenthood to a trusted component, the risks stemming from the
 complexity of various kinds of shells can be mitigated.

 Publishing and subscribing

 All the mechanisms for transferring data between components presented in Section
 Inter-component communication have in common that data is transferred in a
 peer-to-peer fashion. A client transfers data to a server or
 vice versa. However, there are situations where such a close coupling of both
 ends of communication is not desired. In multicast scenarios, the producer
 of information desires to propagate information without the need to interact
 (or even depend on a handshake) with each individual recipient. Specifically,
 a component might want to publish status information about itself that might
 be useful for other components. For example, a wireless-networking driver may
 report the list of detected wireless networks along with their respective
 SSIDs and reception qualities such that a GUI component can pick up the
 information and present it to the user. Each time, the driver detects a change
 in the ether, it wants to publish an updated version of the list. Such a
 scenario could principally be addressed by introducing a use-case-specific
 session interface, i.e., a "wlan-list" session. But this approach has two
 disadvantages.

 	

 It forces the wireless driver to play an additional server role. Instead
 of pushing information anytime at the discretion of the driver, the driver
 has to actively support the pulling of information from the wlan-list
 client. This is arguably more complex.

 	

 The wlan-list session interface ultimately depends on the capabilities
 of the driver implementation. If an alternative wireless driver is able to
 supplement the list with further details, the wlan-list session interface of
 the alternative driver might look different. As a consequence, the approach is
 likely to introduce many special-purpose session interfaces. This
 contradicts with the goal to promote the composability of components as stated
 at the beginning of Section Common session interfaces.

 As an alternative to introducing special-purpose session interfaces for
 addressing the scenarios outlined above, two existing session interfaces can
 be combined, namely ROM and report.

 Report-ROM server

 The report-rom server is both a ROM service and a report service. It
 acts as an information broker between information providers (clients of the
 report service) and information consumers (clients of the ROM service).

 To propagate its internal state to the outside, a component creates a report
 session. From the client's perspective, the posting of information via
 the report session's submit function is a
 fire-and-forget operation, similar to the submission of a signal. But in
 contrast to a signal, which cannot carry any payload, a report is
 accompanied with arbitrary data. For the example above, the wireless driver
 would create a report session. Each time, the list of networks changes, it
 would submit an updated list as a report to the report-ROM server.

 The report-ROM server stores incoming reports in a database using the client's
 session label as key. Therefore, the wireless driver's report will end up in the
 database under the name of the driver component. If one component wishes to
 post reports of different kinds, it can do so by extending the session label
 by a component-provided label suffix supplied as session-construction argument
 (Section Report). The memory needed as the backing store for the report at
 the report-ROM server is accounted to the report client via the session-quota
 mechanism described in Section Trading memory between clients and servers.

 In its role of a ROM service, the report-ROM server hands out the reports
 stored in its database as ROM modules. The association of reports with
 ROM sessions is based on the session label of the ROM client. The
 configuration of the report-ROM server contains a list of policies as
 introduced in Section Server-side policy selection. Each policy entry
 is accompanied with a corresponding key into the report database.

 When a new report comes in, all ROM clients that are associated with the
 report are informed via a ROM-update signal
 (Section Read-only memory (ROM)). Each client can individually respond
 to the signal by following the ROM-module update procedure and thereby
 obtain the new version of the report. From the
 client's perspective, the origin of the information is opaque. It cannot
 decide whether the ROM module is provided by the report-ROM server or
 an arbitrary other ROM service.

 Coming back to the wireless-driver example, the use of the report-ROM server
 effectively decouples the GUI application from the wireless driver.
 This has the following benefits:

 	

 The application can be developed and tested with an arbitrary ROM server
 supplying an artificially created list of networks.

 	

 There is no need for the introduction of a special-purpose session
 interface between both components.

 	

 The wireless driver can post state updates in an intuitive fire-and-forget
 way without playing an additional server role.

 	

 The wireless driver can be restarted without affecting the application.

 Poly-instantiation of the report-ROM mechanism

 The report-ROM server is a canonical example of a protocol stack
 (Section Protocol stacks). It performs a translation between the
 report-session interface and the ROM-session interface. Being a protocol
 stack, it can be instantiated any number of times. It is up to the system
 integrator whether to use one instance for gathering the reports of many
 report clients, or to instantiate multiple report-ROM servers. Taken to the
 extreme, one report-ROM server could be instantiated per report client. The
 routing of ROM-session requests restricts the access of the ROM clients to
 the different instances. Even in the event that the report-ROM server is
 compromised, the policy for the information flows between the producers and
 consumers of information stays in effect.

 Enslaving services

 In the scenarios described in the previous sections, the relationships
 between clients and servers have been one of the following:

 	

 The client is a sibling of the server within the component tree, or

 	

 The client is a child of a parent that provides a locally-implemented
 service to its child.

 However, the Genode architecture allows for a third option: The parent
 can be a client of its own child. Given the discussion in Section
 Client-server relationship, this arrangement looks counter-intuitive
 at first because the discussion concluded that a client has to trust
 the server with respect to the client's liveliness. Here, a call to the server
 would be synonymous to a call to the child. Even though the parent is the
 owner of the child, it would make itself dependent on the child, which is
 generally against the interest of the parent.

 That said, there is a plausible case where the parent's trust in a
 child is justified: If the parent uses an existing component like a
 3rd-party library. When calling code of a 3rd-party library, the caller
 implicitly agrees
 to yield control to the library and trusts the called function to return
 at some point. The call of a service that is provided by a child corresponds
 to such a library call.

 By providing the option to host a server as a child component, Genode's
 architecture facilitates the use of arbitrary server components in a
 library-like fashion.
 Because the server performs a useful function but is owned by its client,
 it is called slave.
 An application may aggregate existing protocol-stack components as slaves
 without the need to incorporate the code of the protocol stacks into the
 application.
 For example, by enslaving the report-ROM server introduced in Section
 Publishing and subscribing, an application becomes able to use it as a local
 publisher-subscriber mechanism.
 Another example would be an application that aggregates an instance of the
 nitpicker GUI server for the sole purpose of composing an image out of several
 source images.
 When started, the nitpicker slave requests a framebuffer and an input session.
 The application responds to these requests by handing out locally-implemented sessions so that
 the output of the nitpicker slave becomes visible to the application.
 To perform the image composition, the application creates a nitpicker session
 for each source image and supplies the image data to the virtual framebuffer
 of the respective session.
 After configuring nitpicker views according to the desired layout of the
 final image, the
 application obtains the composed image from nitpicker's
 framebuffer.

 Note that by calling the slave, the parent does not need to trust the
 slave with respect to the integrity and confidentiality of its internal
 state (see the discussion in Section Client-server relationship). By
 performing the call, only the liveliness of the parent is potentially
 affected. If not trusting the slave to return control once called, the
 parent may take special precautions: A watchdog thread inside the parent
 could monitor the progress of the slave and cancel the call after the
 expiration of a timeout.

Genode OS Framework Foundations

 Development

 The Genode OS framework is accompanied by a scalable build system and tooling
 infrastructure that is designed for the creation of highly modular and
 portable systems software.
 Understanding the underlying concepts is important for leveraging the full
 potential of the framework.
 This chapter complements Chapter Getting started with the explanation of the
 coarse-grained source-tree structure (Section Source-code repositories),
 the integration
 of 3rd-party software (Section Integration of 3rd-party software),
 the build system (Section Build system), and system-integration tools
 (Section System integration and automated testing).
 Furthermore, it describes the project's development process in Section
 Git flow.

 Source-code repositories

 As briefly introduced in Section Source-tree structure, Genode's source tree
 is organized in the form of several source-code repositories. This
 coarse-grained modularization of the source code has the following benefits:

 	

 Source codes of different concerns remain well separated.
 For example, the platform-specific code for each base
 platform is located in a dedicated base-<platform> repository.

 	

 Different abstraction levels and features of the system can be maintained
 in different source-code repositories.
 Whereby the source code contained in the os repository is free from any
 dependency from 3rd-party software, the components hosted in the libports
 repository are free to use foreign code.

 	

 Custom developments and experimental features can be hosted in dedicated
 source-code repositories, which do not interfere with Genode's source
 tree. Such a custom repository can be managed independently from Genode
 using arbitrary revision-control systems.

 The build-directory configuration defines the set of repositories to
 incorporate into the build process. At build time, the build system overlays
 the directory structures of all selected repositories
 to form a single logical source tree. The selection of source-code
 repositories ultimately defines the view of the build system on the source
 tree.

 Note that the order of the repositories as configured in the build
 configuration (in etc/build.conf) is important. Front-most repositories
 shadow subsequent repositories.
 This makes the repository mechanism a powerful tool for tweaking
 existing repositories: By adding a custom repository in front of another one,
 customized versions of single files (e.g., header files or target description
 files) can be supplied to the build system without changing the original
 repository.

 Each source-code repository has the principle structure shown in Table
 1.

 	 Directory
 	 Description

 	 doc/
 	 Documentation, specific for the repository

 	 etc/
 	 Default configuration for the build process

 	 mk/
 	 Build-system supplements

 	 include/
 	 Globally visible header files

 	 src/
 	 Source codes and target build descriptions

 	 lib/mk/
 	 Library build descriptions

 	 lib/import/
 	 Library import descriptions

 	 ports/
 	 Port descriptions of 3rd-party software

 Table 1: Structure of a source-code repository. Depending on the repository, only a subset of those directories may be present.

 Integration of 3rd-party software

 Downloaded 3rd-party source code resides outside of the actual repository at
 the central <genode-dir>/contrib/ directory. This structure has the
 following benefits over hosting 3rd-party source code along with Genode's
 genuine source code:

 	

 Working with grep within the repositories works very efficient because
 downloaded and extracted 3rd-party code is not in the way. Such code
 resides next to the repositories.

 	

 Storing all build directories and downloaded 3rd-party source code somewhere
 outside the Genode source tree, e.g., on different disk partitions, can
 be easily accomplished by creating symbolic links for the build/
 and contrib/ directories.

 The contrib/ directory is managed using the tools at
 <genode-dir>/tool/ports/.

 	Obtain a list of available ports

 	

 tool/ports/list

 	Download and install a port

 	

 tool/ports/prepare_port <port-name>

 The prepare_port tool scans all repositories under repos/ for the specified
 port and installs the port into contrib/. Each version
 of an installed port resides in a dedicated subdirectory within the contrib/
 directory. The port-specific directory is called port directory. It is named
 <port-name>-<fingerprint>. The <fingerprint> uniquely identifies
 the version of the port (it is a SHA256 hash of the ingredients of the
 port). If two versions of the same port are installed, each of them will
 have a different fingerprint. So they end up in different directories.

 Within a source-code repository, a port is represented by two files, a
 <port-name>.port and a <port-name>.hash file. Both files reside at the
 ports/ subdirectory of the corresponding repository. The
 <port-name>.port file is the port description, which declares the
 ingredients of the port, e.g., the archives to download and the patches to apply.
 The <port-name>.hash file contains the fingerprint of the corresponding
 port description, thereby uniquely identifying a version of the port
 as expected by the checked-out Genode version.

 For step-by-step instructions on how to add a port using the mechanism,
 please refer to the porting guide:

 	Genode Porting Guide

 	

 http://genode.org/documentation/developer-resources/porting

 Build system

 Build directories

 The build system is supposed to never touch the source tree. The procedure of
 building components and integrating them into system scenarios is performed
 within a distinct build directory. One build directory targets a specific
 kernel and hardware platform. Because the source tree is decoupled
 from the build directory, one source tree can have many different build
 directories associated, each targeted at a different platform.

 The recommended way for creating a build directory is the use of the
 create_builddir tool located at <genode-dir>/tool/.
 The tool prints usage information along with a list of supported base
 platforms when started without arguments.
 For creating a new build directory, one of the listed target platforms must be
 specified. By default, the new build directory is created at
 <genode-dir>/build/<platform>/ where <platform> corresponds to the
 specified argument.
 Alternatively, the default location can be overridden via the optional
 BUILD_DIR= argument. For example:

 cd <genode-dir>
 ./tool/create_builddir x86_64 BUILD_DIR=/tmp/build.x86_64

 This command creates a new build directory for the 64-bit x86 platform
 at /tmp/build.x86_64/.
 For the basic operations available from within the build directory, please
 refer to Section Using the build system.

 Configuration

 Each build directory contains a Makefile, which is a symbolic link to
 tool/builddir/build.mk. The makefile is the front end of the build system
 and not supposed to be edited. Besides the makefile, there is an etc/
 subdirectory that contains the build-directory configuration. For most
 platforms, there exists merely a single build.conf file, which defines the
 source-code repositories to be incorporated into the build process along
 with the parameters for the run tool explained in Section Run tool.

 The selection of source-code repositories is defined by the REPOSITORIES
 declaration, which contains a list of directories.
 The etc/build.conf file as found in a freshly created build directory is
 preconfigured to select the source-code repositories
 base-<platform>, base, os, and demo.
 There are a number of commented-out lines that can be uncommented for
 enabling additional repositories.

 Cleaning

 To remove all but kernel-related generated files, use

 make clean

 To remove all generated files, use

 make cleanall

 Both clean and cleanall won't remove any files from the bin/
 subdirectory. This makes the bin/ a safe place for files that are
 unrelated to the build process, yet are required for the integration stage, e.g.,
 binary data.

 Controlling the verbosity

 To understand the inner workings of the build process in more detail, you can
 tell the build system to display each directory change by specifying

 make VERBOSE_DIR=

 If you are interested in the arguments that are passed to each invocation of
 make, you can make them visible via

 make VERBOSE_MK=

 Furthermore, you can observe each single shell-command invocation by specifying

 make VERBOSE=

 Of course, you can combine these verboseness toggles for maximizing the noise.

 Target descriptions

 Each build target is represented by a corresponding target.mk file within
 the src/ subdirectory of a source-code repository.
 This file declares the name of the target, the source codes to be incorporated
 into the target, and the libraries the target depends on.
 The build system evaluates target descriptions using make. Hence, the syntax
 corresponds to the syntax of makefiles and the principle functionality
 of make is available for target.mk files. For example, it is possible to
 define custom rules as done in
 Section Building tools to be executed on the host platform.

 Target declarations

 	TARGET

 	

 is the name of the binary to be created. This is the
 only mandatory variable to be defined in each target.mk file.

 	LIBS

 	

 is the list of libraries that are used by the target.

 	SRC_CC

 	

 contains the list of .cc source files. The default search location
 for source codes is the directory where the target.mk file resides.

 	SRC_C

 	

 contains the list of .c source files.

 	SRC_S

 	

 contains the list of assembly .s source files.

 	SRC_BIN

 	

 contains binary data files to be linked to the target.

 	INC_DIR

 	

 is the list of include search locations. Directories should
 always be appended by using +=.

 	REQUIRES

 	

 expresses the requirements that must be satisfied in order to
 build the target. More details about the underlying mechanism is provided
 by Section Platform specifications.

 	CC_OPT

 	

 contains additional compiler options to be used for .c as
 well as for .cc files.

 	CC_CXX_OPT

 	

 contains additional compiler options to be used for the
 C++ compiler only.

 	CC_C_OPT

 	

 contains additional compiler options to be used for the
 C compiler only.

 	EXT_OBJECTS

 	

 is a list of external objects or libraries. This
 declaration is merely used for interfacing Genode with legacy software
 components.

 Specifying search locations

 When specifying search locations for header files via the INC_DIR variable or
 for source files via vpath, the use of relative pathnames is illegal. Instead,
 the following variables can be used to reference locations within the
 source-code repository where the target resides:

 	REP_DIR

 	

 is the base directory of the target's source-code repository.
 Normally, specifying locations relative to the base of the repository is
 rarely used by target.mk files but needed by library descriptions.

 	PRG_DIR

 	

 is the directory where the target.mk file resides. This
 variable is always to be used when specifying a relative path.

 	$(callselect_from_repositories,path/relative/to/repo)

 	

 This function returns the absolute path for the given repository-relative
 path by looking at all source-code repositories in their configured order.
 Hereby, it is possible to access files or directories that are outside
 the target's source-code repository.

 	$(callselect_from_ports,<port-name>)

 	

 This function returns the absolute path for the contrib directory of the
 specified <port-name>. The contrib directory is located at
 <genode-dir>/contrib/<port-name>-<fingerprint> whereby <fingerprint>
 uniquely identifies the version of the port as expected by the current state
 of the Genode source tree.

 Library descriptions

 In contrast to target descriptions that are scattered across the whole source
 tree, library descriptions are located at the central place lib/mk. Each
 library corresponds to a <libname>.mk file. The base of the description file
 is the name of the library. Therefore, no TARGET variable needs to be
 defined.
 The location of source-code files is usually defined relative to $(REP_DIR).
 Library-description files support the following additional declaration:

 	SHARED_LIB=yes

 	

 declares that the library should be built as a shared
 object rather than a static library. The resulting object will be called
 <libname>.lib.so.

 Platform specifications

 Building components for different platforms likely implicates that portions of
 code are tied to certain aspects of the target platform. For example, target
 platforms may differ in the following respects:

 	

 The API of the used kernel,

 	

 The hardware architecture such as x86, ARMv7,

 	

 Certain hardware facilities such as a custom device, or

 	

 Other considerations such as software license requirements.

 Each of those aspects may influence the build process in different ways.
 The build system provides a generic mechanism to steer the build process
 according to such aspects.
 Each aspect is represented by a tag called spec value.
 Any platform targeted by Genode can be characterized by a set of such spec
 values.

 The developer of a software component knows the constraints of his
 software and thus specifies these requirements in the build-description
 file of the component.
 The system integrator defines the platform the software will be
 built for by specifying the targeted platform in the SPECS declaration in the
 build directory's etc/specs.conf file.
 In addition to the (optional) etc/specs.conf
 file within the build directory, the build system incorporates all
 etc/specs.conf files found in the enabled repositories. For example, when
 using the Linux kernel as a platform, the base-linux/etc/specs.conf file is
 picked up automatically. The build directory's specs.conf file can still be
 used to extend the SPECS declarations, for example to enable special features.

 Each <spec> in the SPECS variable instructs the build system to

 	

 Include the make-rules of a corresponding base/mk/spec/<specname>.mk
 file. This enables the customization of the build process for each platform.

 	

 Search for <libname>.mk files in the lib/mk/spec/<specname>/ subdirectory.
 This way, alternative implementations of one and the same
 library interface can be selected depending on the platform specification.

 Before a target or library gets built, the build system checks if the REQUIRES
 entries of the build description file are satisfied by entries of the SPECS
 variable. The compilation is executed only if each entry in the REQUIRES
 variable is present in the SPECS variable as supplied by the build directory
 configuration.

 Building tools to be executed on the host platform

 Sometimes, software requires custom tools that are used to generate source
 code or other ingredients for the build process, for example IDL compilers.
 Such tools won't be executed on top of Genode but on the host platform
 during the build process. Hence, they must be compiled with the tool chain
 installed on the host, not the Genode tool chain.

 The build system accommodates the building of such host tools as a side
 effect of building a library or a target. Even though it is possible to add
 the tool-compilation step to a regular build description file, it is
 recommended to introduce a dedicated pseudo library for building such tools.
 This way, the rules for building host tools are kept separate from rules that
 refer to regular targets. By convention, the pseudo library should be named
 <package>_host_tools and the host tools should be built at
 <build-dir>/tool/<package>/ where <package> refers to the name of the
 software package the tool belongs to, e.g., qt5 or mupdf. To build a tool
 named <tool>, the pseudo library contains a custom make rule like the
 following:

 $(BUILD_BASE_DIR)/tool/<package>/<tool>:
 (MSG_BUILD)(notdir $@)
 $(VERBOSE)mkdir -p $(dir $@)
 $(VERBOSE)...build commands...

 To let the build system trigger the rule, add the custom target to the
 HOST_TOOLS variable:

 HOST_TOOLS += $(BUILD_BASE_DIR)/tool/<package>/<tool>

 Once the pseudo library for building the host tools is in place, it can be
 referenced by each target or library that relies on the respective tools via
 the LIBS declaration. The tool can be invoked by referring to
 $(BUILD_BASE_DIR)/tool/<package>/tool.

 For an example of using custom host tools, please refer to the mupdf package
 found within the libports repository. During the build of the mupdf library,
 two custom tools fontdump and cmapdump are invoked. The tools are built via
 the lib/mk/mupdf_host_tools.mk library description file. The actual mupdf
 library (lib/mk/mupdf.mk) has the pseudo library mupdf_host_tools listed
 in its LIBS declaration and refers to the tools relative to
 $(BUILD_BASE_DIR).

 Building 3rd-party software

 The source code of 3rd-party software is managed by the mechanism presented in
 Section Integration of 3rd-party software. Once prepared, such source codes
 resides in a subdirectory of <genode-dir>/contrib/.

 If the build system encounters a target that incorporates
 ported source code (that is, a build-description file that calls the
 select_from_ports function), it looks up the respective <port-name>.hash
 file in the
 repositories as specified in the build configuration. The fingerprint found in
 the hash file is used to construct the path to the port directory under
 contrib/. If that lookup fails, a meaningful error is printed. Any number of
 versions of the same port can be installed at the same time. I.e., when
 switching Git branches that use different versions of the same port, the build
 system automatically finds the right port version as expected by the currently
 active branch.

 System integration and automated testing

 Genode's portability across kernels and hardware platforms is one of the prime
 features of the framework. However, each kernel or hardware platform requires
 different considerations when it comes to system configuration, integration, and
 booting. When using a particular kernel, profound knowledge
 about the boot concept and the kernel-specific tools is required. To
 streamline the testing of system scenarios across the many different supported
 kernels and hardware platforms, the framework is equipped with tools that
 relieve the system integrator from these peculiarities.

 Run tool

 The centerpiece of the system-integration infrastructure is the so-called run
 tool. Directed by a script (run script), it performs all the steps necessary to
 test a system scenario. Those steps are:

 	

 Building the components of a scenario

 	

 Configuration of the init component

 	

 Assembly of the boot directory

 	

 Creation of the boot image

 	

 Powering-on the test machine

 	

 Loading of the boot image

 	

 Capturing the LOG output

 	

 Validation of the scenario's behavior

 	

 Powering-off the test machine

 Each of those steps depends on various parameters such as the
 used kernel, the hardware platform used to execute the scenario, the
 way the test hardware is connected to the test infrastructure
 (e.g., UART, AMT, JTAG, network), the way the test hardware is powered or
 reset, or the way of how the scenario is loaded into the test hardware.
 To accommodate the variety of combinations of these
 parameters, the run tool consists of an extensible library of modules.
 The selection and configuration of the modules is expressed in the run-tool
 configuration. The following types of modules exist:

 	boot-dir modules

 	

 These modules contain the functionality to populate the boot directory
 and are specific to each kernel. It is mandatory to always include the
 module corresponding to the used kernel.

 (the available modules are: linux, hw, okl4, fiasco, pistachio, nova,
 sel4, foc)

 	image modules

 	

 These modules are used to wrap up all components used by the run script
 in a specific format and thereby prepare them for execution.
 Depending on the used kernel, different formats can be used. With these
 modules, the creation of ISO and disk images is also handled.

 (the available modules are: uboot, disk, iso)

 	load modules

 	

 These modules handle the way the components are transfered to the
 target system. Depending on the used kernel there are various options
 to pass on the components. For example, loading from TFTP or via JTAG is handled
 by the modules of this category.

 (the available modules are: tftp, jtag, fastboot, ipxe)

 	log modules

 	

 These modules handle how the output of a currently executed run script
 is captured.

 (the available modules are: qemu, linux, serial, amt)

 	power_on modules

 	

 These modules are used for bringing the target system into a defined
 state, e.g., by starting or rebooting the system.

 (the available modules are: qemu, linux, softreset, amt, netio)

 	power_off modules

 	

 These modules are used for turning the target system off after the
 execution of a run script.

 Each module has the form of a script snippet located under the
 tool/run/<step>/
 directory where <step> is a subdirectory named after the module type.
 Further instructions about the use of each module (e.g., additional
 configuration arguments) can be found in the form of comments inside the
 respective script snippets.
 Thanks to this modular structure,
 an extension of the tool kit comes down to adding a file at the corresponding
 module-type subdirectory. This way, custom work flows (such as tunneling JTAG
 over SSH) can be accommodated fairly easily.

 Run-tool configuration examples

 To execute a run script, a combination of modules may be used. The combination
 is controlled via the RUN_OPT declaration contained in the build directory's
 etc/build.conf file.
 The following examples illustrate the selection and configuration of different
 run modules:

 Executing NOVA in Qemu

RUN_OPT = --include boot_dir/nova \
 --include power_on/qemu --include log/qemu --include image/iso

 By including boot_dir/nova, the run tool assembles a boot directory equipped
 with a boot loader and a boot-loader configuration that is able to bootstrap
 the NOVA kernel. The combination of the modules power_on/qemu and log/qemu
 prompts the run tool to spawn the Qemu emulator with the generated boot image
 and fetch the log output of the emulated machine from its virtual comport.
 The specification of image/iso tells the run tool to use a bootable
 ISO image as a boot medium as opposed to a disk image.

 Executing NOVA on a real x86 machine using AMT

 The following example uses Intel's advanced management technology (AMT)
 to remotely reset a physical target machine (power_on/amt)
 and capture the serial output over network (log/amt). In contrast to the
 example above, the system scenario is supplied via TFTP (load/tftp). Note
 that the example requires a working network-boot setup including a TFTP
 server, a DHCP server, and a PXE boot loader.

RUN_OPT = --include boot_dir/nova \
 --include power_on/amt \
 --power-on-amt-host 10.23.42.13 \
 --power-on-amt-password 'foo!' \
 --include load/tftp \
 --load-tftp-base-dir /var/lib/tftpboot \
 --load-tftp-offset-dir /x86 \
 --include log/amt \
 --log-amt-host 10.23.42.13 \
 --log-amt-password 'foo!'

 If the test machine has a comport connection to the machine where the run
 tool is executed, the log/serial module may be used instead of 'log/amt':

 --include log/serial --log-serial-cmd 'picocom -b 115200 /dev/ttyUSB0'

 Executing base-hw on a Raspberry Pi

 The following example boots a system scenario based on the base-hw kernel on
 a Raspberry Pi that is powered via a network-controllable power plug (netio).
 The Raspberry Pi is connected to a JTAG debugger, which is used to load the
 system image onto the device.

RUN_OPT = --include boot_dir/hw \
 --include power_on/netio \
 --power-on-netio-ip 10.23.42.5 \
 --power-on-netio-user admin \
 --power-on-netio-password secret \
 --power-on-netio-port 1 \
 --include power_off/netio \
 --power-off-netio-ip 10.23.42.5 \
 --power-off-netio-user admin \
 --power-off-netio-password secret \
 --power-off-netio-port 1 \
 --include load/jtag \
 --load-jtag-debugger \
 /usr/share/openocd/scripts/interface/flyswatter2.cfg \
 --load-jtag-board \
 /usr/share/openocd/scripts/interface/raspberrypi.cfg \
 --include log/serial \
 --log-serial-cmd 'picocom -b 115200 /dev/ttyUSB0'

 Meaningful default behaviour

 The create_builddir tool introduced in Section Using the build system
 equips a freshly created build directory with a meaningful
 default configuration that depends on the selected platform and the used
 kernel. For example, when creating a build directory for the x86_64 base
 platform and building a scenario with KERNEL=linux, RUN_OPT is
 automatically defined as

 RUN_OPT = --include boot_dir/linux \
 --include power_on/linux --include log/linux

 Run scripts

 Using run scripts, complete system scenarios can be described in a
 concise and kernel-independent way. As
 described in Section A simple system scenario, a run script can be used
 to integrate and test-drive the scenario directly from the build directory.
 The best way to get acquainted with the concept is by reviewing the run script
 for the hello-world example presented in Section Defining a system scenario.
 It performs the following steps:

 	

 Building the components needed for the system using the build command.
 This command instructs the build system to compile the targets listed in
 the brace block. It has the same effect as manually invoking make with
 the specified argument from within the build directory.

 	

 Creating a new boot directory using the create_boot_directory command.
 The integration of the scenario is performed in a dedicated directory at
 <build-dir>/var/run/<run-script-name>/. When the run script is finished,
 this boot directory will contain all components of the final system.

 	

 Installing the configuration for the init component into the boot directory
 using the
 install_config command. The argument to this command will be written
 to a file called config within the boot directory. It will eventually
 be loaded as boot module and made available by core's ROM service
 to the init component. The configuration of init is explained in
 Chapter System configuration.

 	

 Creating a bootable system image using the build_boot_image command.
 This command copies the specified list of files from the <build-dir>/bin/
 directory to the boot directory and executes the steps
 needed to transform the content of the boot directory into a bootable
 form.
 Under the hood, the run tool invokes the run-module types boot_dir and
 boot_image.
 Depending on the run-tool configuration, this form may be an ISO
 image, a disk image, or a bootable ELF image.

 	

 Executing the system image using the run_genode_until command. Depending
 on the run-tool configuration,
 the system image is executed using an emulator or a physical machine.
 Under the hood, this step invokes the run modules of the types
 power_on, load, log, and power_off.
 For most platforms, Qemu is used by default. On Linux,
 the scenario is executed by starting core directly from the boot
 directory. The run_genode_until command takes a regular expression
 as argument. If the log output of the scenario matches the specified
 pattern, the run_genode_until command returns. If specifying forever
 as argument, this command will never return.
 If a regular expression is specified, an additional argument determines
 a timeout in seconds. If the regular expression does not match until
 the timeout is reached, the run script will abort.

 After the successful completion of a run script, the run tool prints the
 message "Run script execution successful.".

 Note that the hello.run script does not contain kernel-specific information.
 Therefore it can be executed from the build directory of any base platform
 via the command makerun/helloKERNEL=<kernel>.
 When invoking make with an argument of the form run/<run-script>, the
 build system searches all repositories for a run script with the specified name.
 The run script must be located in one of the repositories' run/ subdirectories
 and have the file extension .run.

 The run mechanism explained

 The run tool is based on expect, which is an extension of the Tcl scripting
 language that allows for the scripting of interactive command-line-based
 programs.
 When the user invokes a run script via make run/<run-script>, the build
 system invokes
 the run tool at <genode-dir>/tool/run/run with the run script and the
 content of the RUN_OPT definition as arguments. The
 run tool is an expect script that has no other purpose than defining several
 commands used by run scripts and including the run modules as specified by the
 run-tool configuration.
 Whereas tool/run/run provides the generic commands, the run modules under
 tool/run/<module>/ contain all the peculiarities of the various kernels
 and boot strategies.
 The run modules thereby document
 precisely how the integration and boot concept works
 for each kernel platform.

 Run modules

 Each module consist of an expect source file located in one of the existing
 directories of a category. It is named implicitly by its location and the
 name of the source file, e.g. image/iso is the name of the image module
 that creates an ISO image.
 The source file contains one mandatory function:

 run_<module> { <module-args> }

 The function is called if the step is executed by the run tool. If its
 execution was successful, it returns true and otherwise false. Certain modules
 may also call exit on failure.

 A module may have arguments, which are - by convention - prefixed with the name
 of the module, e.g., power_on/amt has an argument called
 power-on-amt-host. By convention, the modules contain accessor functions
 for argument values. For example, the function power_on_amt_host in the run module
 power_on/amt returns the value supplied to the argument power-on-amt-host.
 Thereby, a run script can access the value of such arguments
 in a defined way by calling power_on_amt_host. Also, arguments without a value
 are treated similarly. For example, for querying the presence of the argument
 image-uboot-no-gzip, the run module run/image/uboot
 provides the corresponding function image_uboot_use_no_gzip.
 In addition to these functions, a module may have additional public
 functions. Those functions may be used by run scripts or other modules.
 To enable a run script or module to query the presence of another module,
 the run tool provides the function have_include. For example, the presence of
 the load/tftp module can be checked by calling have_include with the
 argument "load/tftp".

 Using run scripts to implement integration tests

 Because run scripts are actually expect scripts, the whole arsenal of
 language features of the Tcl scripting language is available to them. This
 turns run scripts into powerful tools for the automated execution of test
 cases. A good example is the run script at repos/libports/run/lwip.run,
 which tests the lwIP stack by running a simple Genode-based HTTP server on the
 test machine. It fetches and validates a HTML page from this server. The run
 script makes use of a regular expression as argument to the run_genode_until
 command to detect the state when the web server becomes ready, subsequently
 executes the lynx shell command to fetch the web site, and employs Tcl's
 support for regular expressions to validate the result. The run script works
 across all platforms that have network support.
 To accommodate a high diversity of platforms, parts of the run script depend
 on the spec values as defined for the build directory. The spec values
 are probed via the have_spec function. Depending on the probed spec
 values, the run script uses the append_if and lappend_if commands
 to conditionally assemble the init configuration and the list of boot modules.

 To use the run mechanism efficiently, a basic understanding of the Tcl
 scripting language is required. Furthermore the functions provided by
 tool/run/run and the run modules at tool/run/ should be studied.

 Automated testing across base platforms

 To execute one or multiple test cases on more than one base platform, there
 exists a dedicated tool at tool/autopilot. Its primary purpose is the
 nightly execution of test cases. The tool takes a list of platforms and of
 run scripts as arguments and executes each run script on each platform. The
 build directory for each platform is created at
 /tmp/autopilot.<username>/<platform> and the output of each run script is
 written to a file called <platform>.<run-script>.log. On stderr, autopilot
 prints the statistics about whether or not each run script executed
 successfully on each platform. If at least one run script failed, autopilot
 returns a non-zero exit code, which makes it straight forward to include
 autopilot into an automated build-and-test environment.

 Package management

 The established system-integration work flow with Genode is based on the run
 tool as explained in the previous section. It automates the building,
 configuration, integration, and testing of Genode-based systems. Whereas the
 run tool succeeds in overcoming the challenges that come with Genode's
 diversity of kernels and supported hardware platforms, its scalability is
 somewhat limited to appliance-like system scenarios: The result of the
 integration process is a system image with a certain feature set. Whenever
 requirements change, the system image is replaced with a freshly created image
 that takes those requirements into account. In practice, there are two
 limitations of this system-integration approach:

 First, since the run tool implicitly builds all components required for a
 system scenario, the system integrator has to compile all components from
 source. For example, if a system includes a component based on Qt5, one needs to
 compile the entire Qt5 application framework, which induces significant
 overhead to the actual system-integration tasks of composing and configuring
 components.

 Second, general-purpose systems tend to become too complex and diverse to be
 treated as system images. When looking at commodity OSes, each installation
 differs with respect to the installed set of applications, user preferences,
 used device drivers and system preferences. A system based on the run tool's
 work flow would require the user to customize the run script of the system for
 each tweak. To stay up to date, the user would need to re-create the
 system image from time to time while manually maintaining any customizations.
 In practice this is a burden very few end users are willing to endure.

 The primary goal of Genode's package management is to overcome these
 scalability limitations, in particular:

 	

 Alleviating the need to build everything that goes into system scenarios
 from scratch,

 	

 Facilitating modular system compositions while abstracting from technical
 details,

 	

 On-target system update and system development,

 	

 Assuring the user that system updates are safe to apply by providing the
 ability to easily roll back the system or parts thereof to previous versions,

 	

 Securing the integrity of the deployed software,

 	

 Low friction for existing developers.

 The design of Genode's package-management concept is largely influenced by Git
 as well as the Nix package manager. In particular
 the latter opened our eyes to discover the potential that lies beyond the
 package management employed in state-of-the art commodity systems. Even though
 we considered adapting Nix for Genode and actually conducted intensive
 experiments in this direction, we settled on a custom solution that leverages
 Genode's holistic view on all levels of the operating system including the
 build system and tooling, source structure, ABI design, framework API, system
 configuration, inter-component interaction, and the components itself. Whereby
 Nix is designed for being used on top of Linux, Genode's whole-systems view
 led us to simplifications that eliminated the needs for Nix' powerful features
 like its custom description language.

 Nomenclature

 When speaking about "package management", one has to clarify what a "package"
 in the context of an operating system represents. Traditionally, a package
 is the unit of delivery of a bunch of "dumb" files, usually wrapped up in
 a compressed archive. A package may depend on the presence of other
 packages. Thereby, a dependency graph is formed. To express how packages fit
 with each other, a package is usually accompanied with meta data
 (description). Depending on the package manager, package descriptions follow
 certain formalisms (e.g., package-description language) and express
 more-or-less complex concepts such as versioning schemes or the distinction
 between hard and soft dependencies.

 Genode's package management does not follow this notion of a "package".
 Instead of subsuming all deliverable content under one term, we distinguish
 different kinds of content, each in a tailored and simple form. To avoid the
 clash of the notions of the common meaning of a "package", we speak of
 "archives" as the basic unit of delivery. The following subsections introduce
 the different categories.
 Archives are named with their version as suffix, appended via a slash. The
 suffix is maintained by the author of the archive. The recommended naming
 scheme is the use of the release date as version suffix, e.g.,
 report_rom/2017-05-14.

 Raw-data archive

 A raw-data archive contains arbitrary data that is - in contrast to executable
 binaries - independent from the processor architecture. Examples are
 configuration data, game assets, images, or fonts. The content of raw-data
 archives is expected to be consumed by components at runtime. It is not
 relevant for the build process of executable binaries. Each raw-data
 archive contains merely a collection of data files. There is no meta data.

 API archive

 An API archive has the structure of a Genode source-code repository. It may
 contain all the typical content of such a source-code repository such as header
 files (in the include/ subdirectory), source codes (in the src/
 subdirectory), library-description files (in the lib/mk/ subdirectory), or
 ABI symbols (lib/symbols/ subdirectory). At the top level, a LICENSE file is
 expected that clarifies the license of the contained source code. There is no
 meta data contained in an API archive.

 An API archive is meant to provide ingredients for building components. The
 canonical example is the public programming interface of a library (header
 files) and the library's binary interface in the form of an ABI-symbols file.
 One API archive may contain the interfaces of multiple libraries. For example,
 the interfaces of libc and libm may be contained in a single "libc" API
 archive because they are closely related to each other. Conversely, an API
 archive may contain a single header file only. The granularity of those
 archives may vary. But they have in common that they are used at build time
 only, not at runtime.

 Source archive

 Like an API archive, a source archive has the structure of a Genode
 source-tree repository and is expected to contain all the typical content of
 such a source repository along with a LICENSE file. But unlike an API archive,
 it contains descriptions of actual build targets in the form of Genode's usual
 target.mk files.

 In addition to the source code, a source archive contains a file
 called used_apis, which contains a list of API-archive names with each
 name on a separate line. For example, the used_apis file of the report_rom
 source archive looks as follows:

 base/2017-05-14
 os/2017-05-13
 report_session/2017-05-13

 The used_apis file declares the APIs needed to incorporate into the build
 process when building the source archive. Hence, they represent build-time
 dependencies on the specific API versions.

 A source archive may be equipped with a top-level file called api containing
 the name of exactly one API archive. If present, it declares that the source
 archive implements the specified API. For example, the libc/2017-05-14
 source archive contains the actual source code of the libc and libm as well as
 an api file with the content libc/2017-04-13. The latter refers to the API
 implemented by this version of the libc source package (note the differing
 versions of the API and source archives)

 Binary archive

 A binary archive contains the build result of the equally-named source archive
 when built for a particular architecture. That is, all files that would appear
 in the <build-dir>/bin/ subdirectory when building all targets present in
 the source archive. There is no meta data present in a binary archive.

 A binary archive is created out of the content of its corresponding source
 archive and all API archives listed in the source archive's used_apis file.
 Note that since a binary archive depends on only one source archive, which
 has no further dependencies, all binary archives can be built independently
 from each other.
 For example, a libc-using application needs the source code of the
 application as well as the libc's API archive (the libc's header file and
 ABI) but it does not need the actual libc library to be present.

 Package archive

 A package archive contains an archives file with a list of archive names
 that belong together at runtime. Each listed archive appears on a separate line.
 For example, the archives file of the package archive for the window
 manager wm/2018-02-26 looks as follows:

 genodelabs/raw/wm/2018-02-14
 genodelabs/src/wm/2018-02-26
 genodelabs/src/report_rom/2018-02-26
 genodelabs/src/decorator/2018-02-26
 genodelabs/src/floating_window_layouter/2018-02-26

 In contrast to the list of used_apis of a source archive, the content of
 the archives file denotes the origin of the respective archives
 ("genodelabs"), the archive type, followed by the versioned name of the
 archive.

 An archives file may specify raw archives, source archives, or package
 archives (as type pkg). It thereby allows the expression of _runtime
 dependencies_. If a package archive lists another package archive, it inherits
 the content of the listed archive. This way, a new package archive may easily
 customize an existing package archive.

 A package archive does not specify binary archives directly as they differ
 between the architecture and are already referenced by the source archives.

 In addition to an archives file, a package archive is expected to contain
 a README file explaining the purpose of the collection.

 Depot structure

 Archives are stored within a directory tree called depot/. The depot
 is structured as follows:

 <user>/pubkey
 <user>/download
 <user>/src/<name>/<version>/
 <user>/api/<name>/<version>/
 <user>/raw/<name>/<version>/
 <user>/pkg/<name>/<version>/
 <user>/bin/<arch>/<src-name>/<src-version>/

 The <user> stands for the origin of the contained archives. For example, the
 official archives provided by Genode Labs reside in a genodelabs/
 subdirectory. Within this directory, there is a pubkey file with the
 user's public key that is used to verify the integrity of archives downloaded
 from the user. The file download specifies the download location as an URL.

 Subsuming archives in a subdirectory that correspond to their origin
 (user) serves two purposes. First, it provides a user-local name space for
 versioning archives. E.g., there might be two versions of a
 nitpicker/2017-04-15 source archive, one by "genodelabs" and one by
 "nfeske". However, since each version resides in its origin's subdirectory,
 version-naming conflicts between different origins cannot happen. Second, by
 allowing multiple archive origins in the depot side-by-side, package archives
 may incorporate archives of different origins, which fosters the goal of a
 federalistic development, where contributions of different origins can be
 easily combined.

 The actual archives are stored in the subdirectories named after the archive
 types (raw, api, src, bin, pkg). Archives contained in the bin/
 subdirectories are further subdivided in the various architectures (like
 x86_64, or arm_v7).

 Depot management

 The tools for managing the depot content reside under the tool/depot/
 directory. When invoked without arguments, each tool prints a brief
 description of the tool and its arguments.

 Unless stated otherwise, the tools are able to consume any number of archives
 as arguments. By default, they perform their work sequentially. This can be
 changed by the -j<N> argument, where <N> denotes the desired level of
 parallelization. For example, by specifying -j4 to the tool/depot/build
 tool, four concurrent jobs are executed during the creation of binary archives.

 Downloading archives

 The depot can be populated with archives in two ways, either by creating
 the content from locally available source codes as explained by Section
 Automated extraction of archives from the source tree, or by downloading
 ready-to-use archives from a web server.

 In order to download archives originating from a specific user, the depot's
 corresponding user subdirectory must contain two files:

 	pubkey

 	

 contains the public key of the GPG key pair used by the creator
 (aka "user") of the to-be-downloaded archives for signing the archives. The
 file contains the ASCII-armored version of the public key.

 	download

 	

 contains the base URL of the web server where to fetch archives
 from. The web server is expected to mirror the structure of the depot.
 That is, the base URL is followed by a sub directory for the user,
 which contains the archive-type-specific subdirectories.

 If both the public key and the download locations are defined, the download
 tool can be used as follows:

 ./tool/depot/download genodelabs/src/zlib/2018-01-10

 The tool automatically downloads the specified archives and their
 dependencies. For example, as the zlib depends on the libc API, the libc API
 archive is downloaded as well. All archive types are accepted as arguments
 including binary and package archives. Furthermore, it is possible to download
 all binary archives referenced by a package archive. For example, the
 following command downloads the window-manager (wm) package archive, including
 all binary archives, for the 64-bit x86 architecture. Downloaded binary
 archives are always accompanied with their corresponding source and used API
 archives.

 ./tool/depot/download genodelabs/pkg/x86_64/wm/2018-02-26

 Archive content is not downloaded directly to the depot. Instead, the
 individual archives and signature files are downloaded to a quarantine area in
 the form of a public/ directory located in the root of Genode's source tree.
 As its name suggests, the public/ directory contains data that is imported
 from or to-be exported to the public. The download tool populates it with the
 downloaded archives in their compressed form accompanied with their
 signatures.

 The compressed archives are not extracted before their signature is checked
 against the public key defined at depot/<user>/pubkey. If however the
 signature is valid, the archive content is imported to the target destination
 within the depot. This procedure ensures that depot content - whenever
 downloaded - is blessed by the cryptographic signature of its creator.

 Building binary archives from source archives

 With the depot populated with source and API archives, one can use the
 tool/depot/build tool to produce binary archives. The arguments have the
 form <user>/bin/<arch>/<src-name> where <arch> stands for the targeted
 CPU architecture. For example, the following command builds the zlib
 library for the 64-bit x86 architecture. It executes four concurrent jobs
 during the build process.

 ./tool/depot/build genodelabs/bin/x86_64/zlib/2018-01-10 -j4

 Note that the command expects a specific version of the source archive as
 argument. The depot may contain several versions. So the user has to decide,
 which one to build.

 After the tool is finished, the freshly built binary archive can be found in
 the depot within the genodelabs/bin/<arch>/<src>/<version>/ subdirectory.
 Only the final result of the built process is preserved. In the example above,
 that would be the zlib.lib.so library.

 For debugging purposes, it might be interesting to inspect the intermediate
 state of the build. This is possible by adding KEEP_BUILD_DIR=1 as argument
 to the build command. The binary's intermediate build directory can be
 found besides the binary archive's location named with a .build suffix.

 By default, the build tool won't attempt to rebuild a binary archive that is
 already present in the depot. However, it is possible to force a rebuild via
 the REBUILD=1 argument.

 Publishing archives

 Archives located in the depot can be conveniently made available to the public
 using the tool/depot/publish tool. Given an archive path, the tool takes
 care of determining all archives that are implicitly needed by the specified
 one, wrapping the archive's content into compressed tar archives, and signing
 those.

 As a precondition, the tool requires you to possess the private key that
 matches the depot/<you>/pubkey file within your depot. The key pair should
 be present in the key ring of your GNU privacy guard.

 To publish archives, one needs to provide the specific version to publish.
 For example:

 ./tool/depot/publish <you>/pkg/x86_64/wm/2018-02-26

 The command checks that the specified archive and all dependencies are present
 in the depot. It then proceeds with the archiving and signing operations. For
 the latter, the pass phrase for your private key will be requested. The
 publish tool outputs the information about the processed archives, e.g.:

 publish /.../public/<you>/api/base/2018-02-26.tar.xz
 publish /.../public/<you>/api/framebuffer_session/2017-05-31.tar.xz
 publish /.../public/<you>/api/gems/2018-01-28.tar.xz
 publish /.../public/<you>/api/input_session/2018-01-05.tar.xz
 publish /.../public/<you>/api/nitpicker_gfx/2018-01-05.tar.xz
 publish /.../public/<you>/api/nitpicker_session/2018-01-05.tar.xz
 publish /.../public/<you>/api/os/2018-02-13.tar.xz
 publish /.../public/<you>/api/report_session/2018-01-05.tar.xz
 publish /.../public/<you>/api/scout_gfx/2018-01-05.tar.xz
 publish /.../public/<you>/bin/x86_64/decorator/2018-02-26.tar.xz
 publish /.../public/<you>/bin/x86_64/floating_window_layouter/2018-02-26.tar.xz
 publish /.../public/<you>/bin/x86_64/report_rom/2018-02-26.tar.xz
 publish /.../public/<you>/bin/x86_64/wm/2018-02-26.tar.xz
 publish /.../public/<you>/pkg/wm/2018-02-26.tar.xz
 publish /.../public/<you>/raw/wm/2018-02-14.tar.xz
 publish /.../public/<you>/src/decorator/2018-02-26.tar.xz
 publish /.../public/<you>/src/floating_window_layouter/2018-02-26.tar.xz
 publish /.../public/<you>/src/report_rom/2018-02-26.tar.xz
 publish /.../public/<you>/src/wm/2018-02-26.tar.xz

 According to the output, the tool populates a directory called public/
 at the root of the Genode source tree with the to-be-published archives.
 The content of the public/ directory is now ready to be copied to a
 web server, e.g., by using rsync.

 Automated extraction of archives from the source tree

 Genode users are expected to populate their local depot with content obtained
 via the tool/depot/download tool. However, Genode developers need a way to
 create depot archives locally in order to make them available to users. Thanks
 to the tool/depot/extract tool, the assembly of archives does not need to be
 a manual process. Instead, archives can be conveniently generated out of the
 source codes present in the Genode source tree and the contrib/ directory.

 However, the granularity of splitting source code into archives, the
 definition of what a particular API entails, and the relationship between
 archives must be augmented by the archive creator as this kind of information
 is not present in the source tree as is. This is where so-called "archive
 recipes" enter the picture. An archive recipe defines the content of an
 archive. Such recipes can be located at an recipes/ subdirectory of any
 source-code repository, similar to how port descriptions and run scripts
 are organized. Each recipe/ directory contains subdirectories for the
 archive types, which, in turn, contain a directory for each archive. The
 latter is called a recipe directory.

 Recipe directory

 The recipe directory is named after the archive omitting the archive version
 and contains at least one file named hash. This file defines the version
 of the archive along with a hash value of the archive's content
 separated by a space character. By tying the version name to a particular hash
 value, the extract tool is able to detect the appropriate points in time
 whenever the version should be increased due to a change of the archive's
 content.

 API, source, and raw-data archive recipes

 Recipe directories for API, source, or raw-data archives contain a
 content.mk file that defines the archive's content in the form of make
 rules. The content.mk file is executed from the archive's location within
 the depot. Hence, the contained rules can refer to archive-relative files as
 targets. The first (default) rule of the content.mk file is executed with a
 customized make environment:

 	GENODE_DIR

 	

 A variable that holds the path to the root of the Genode source tree,

 	REP_DIR

 	

 A variable with the path to the source code repository where the recipe
 is located

 	port_dir

 	

 A make function that returns the directory of a port within the
 contrib/ directory. The function expects the location of the
 corresponding port file as argument, for example, the zlib recipe
 residing in the libports/ repository may specify $(REP_DIR)/ports/zlib
 to access the 3rd-party zlib source code.

 Source archive recipes contain simplified versions of the used_apis and
 (for libraries) api files as found in the archives. In contrast to the
 depot's counterparts of these files, which contain version-suffixed names,
 the files contained in recipe directories omit the version suffix. This
 is possible because the extract tool always extracts the current version
 of a given archive from the source tree. This current version is already
 defined in the corresponding recipe directory.

 Package-archive recipes

 The recipe directory for a package archive contains the verbatim content of
 the to-be-created package archive except for the archives file. All other
 files are copied verbatim to the archive. The content of the recipe's
 archives file may omit the version information from the listed ingredients.
 Furthermore, the user part of each entry can be left blank by using _ as a
 wildcard. When generating the package archive from the recipe, the extract
 tool will replace this wildcard with the user that creates the archive.

 Convenience front-end to the extract, build tools

 For developers, the work flow of interacting with the depot is most often the
 combination of the extract and build tools whereas the latter expects
 concrete version names as arguments. The create tool accelerates this common
 usage pattern by allowing the user to omit the version names. Operations
 implicitly refer to the current version of the archives as defined in
 the recipes.

 Furthermore, the create tool is able to manage version updates for the
 developer. If invoked with the argument UPDATE_VERSIONS=1, it automatically
 updates hash files of the involved recipes by taking the current date as
 version name. This is a valuable assistance in situations where a commonly
 used API changes. In this case, the versions of the API and all dependent
 archives must be increased, which would be a labour-intensive task otherwise.
 If the depot already contains an archive of the current version, the create
 tools won't re-create the depot archive by default. Local modifications of
 the source code in the repository do not automatically result in a new archive.
 To ensure that the depot archive is current, one can specify FORCE=1 when
 executing the create tool. With this argument, existing depot archives are replaced by
 freshly extracted ones and version updates are detected. When specified for
 binary archives, FORCE=1 normally implies REBUILD=1. To prevent
 the superfluous rebuild of binary archives whose source versions remain
 unchanged, FORCE=1 can be combined with the argument REBUILD=.

 Accessing depot content from run scripts

 The depot tools are not meant to replace the run tool but rather to complement
 it. When both tools are combined, the run tool implicitly refers to "current"
 archive versions as defined for the archive's corresponding recipes. This way,
 the regular run-tool work flow can be maintained while attaining a
 productivity boost by fetching content from the depot instead of building it.

 Run scripts can use the import_from_depot function to incorporate archive
 content from the depot into a scenario. The function must be called after the
 create_boot_directory function and takes any number of pkg, src, or raw
 archives as arguments. An archive is specified as depot-relative path of the
 form <user>/<type>/name. Run scripts may call import_from_depot
 repeatedly. Each argument can refer to a specific version of an archive or
 just the version-less archive name. In the latter case, the current version
 (as defined by a corresponding archive recipe in the source tree) is used.

 If a src archive is specified, the run tool integrates the content of
 the corresponding binary archive into the scenario. The binary archives
 are selected according the spec values as defined for the build directory.

 Selectively overriding depot content

 While working on a component that is embedded in a complex system scenario,
 the advantages of the run-tool's work flow and the depot can easily be
 combined. The majority of the scenario's content may come from the depot via
 the import_from_depot mechanism. Because fetching content from the depot
 sidesteps the build system for those components, the system integration step
 becomes very quick. It is still possible to override selected components by
 freshly built ones. For example, while working on the graphical terminal
 component, one may combine the following lines in one run script:

 create_boot_directory
 ...
 import_from_depot genodelabs/pkg/terminal
 ...
 build { server/terminal }
 build_boot_image { terminal }

 Since, the pkg/terminal package is imported from the depot, the scenario
 obtains all ingredients needed to spawn a graphical terminal such as font and
 configuration data. The package also contains the terminal binary. However,
 as we want to use our freshly compiled binary instead, we override the
 terminal with our customized version by specifying the binary name in the
 build_boot_image step.

 The same approach is convenient for instrumenting low-level parts of the
 framework while debugging a larger scenario. As the low-level parts reside
 within the dynamic linker, we can explicitly build the dynamic linker lib/ld
 and integrate the resulting ld.lib.so binary as boot module:

 create_boot_directory
 ...
 import_from_depot genodelabs/src/[base_src]
 ...
 build { lib/ld }
 build_boot_image { ld.lib.so }

 Git flow

 The official Genode Git repository is available at the project's GitHub
 site:

 	GitHub project

 	

 https://github.com/genodelabs/genode

 Master and staging

 The official Git repository has two branches "master" and "staging".

 Master branch

 The master branch is the recommended branch for users of the framework.
 It is known to have passed quality tests. The existing history of this
 branch is fixed and will never change.

 Staging branch

 The staging branch contains the commits that are scheduled for inclusion
 into the master branch. However, before changes are merged into the master
 branch, they are subjected to quality-assurance measures conducted by
 Genode Labs. Those measures include the successful building of the framework
 for all base platforms and the passing of automated tests. After changes
 enter the staging branch, those quality-assurance measures are expected to
 fail. If so, the changes are successively refined by a series of fixup
 commits. Each fixup commit should refer to the commit it is refining using a
 commit message as follows:

 fixup "<commit message of the refined commit>"

 If the fixup is non-trivial, change the "fixup" prefix to "squash" and add
 a more elaborative description to the commit message.

 Once the staging branch passes the quality-assurance measures, the Genode
 maintainers tidy-up the history of the staging branch by merging all fixup
 commits with their respective original commit. The resulting commits are then
 merged on top of the master branch and the staging branch is reset to the new
 master branch.

 Note that the staging branch is volatile. In contrast to the master branch,
 its history is not stable. Hence, it should not be used to base developments
 on.

 Release version

 The version number of a Genode release refers to the release date. The
 two-digit major number corresponds to the last two digits of the year and
 the two-digit minor number corresponds to the month. For example, "17.02".

 Each Genode release represents a snapshot of the master branch taken at
 release time. It is complemented by the following commits:

 	

 "Release notes for version <version>" containing the release documentation
 in the form of a text file at doc/release_notes,

 	

 "News item for Genode <version>" containing the release announcement as
 published at the genode.org website,

 	

 "Version: <version>" with the adaptation of the VERSION file.

 The latter commit is tagged with the version number. The tag is signed by one
 of the mainline developers.

 Development practice

 Each developer maintains a fork of Genode's Git repository. To facilitate
 close collaboration with the developer community, it is recommended
 to host the fork on GitHub. Open a GitHub account, use GitHub's web
 interface to create a new fork, and follow the steps given by GitHub
 to fetch the cloned repository to your development machine.

 In the following, we refer to the official Genode repository as
 "genodelabs/genode". To conveniently follow the project's mainline
 development, it is recommended to register the official repository as a
 "remote" in your Git repository:

 git remote add genodelabs https://github.com/genodelabs/genode.git

 Once, the official repository is known to your clone, you can fetch new
 official revisions via

 git fetch genodelabs

 Topic branches

 As a rule of thumb, every line of development has a corresponding
 topic in the issue tracker. This is the place where the developers discuss and
 review
 the ongoing work. Hence, when starting a new line of development, the first
 step should be the creation of a new topic.

 	Issue tracker

 	

 https://github.com/genodelabs/genode/issues

 The new topic should be accompanied with a short description about the
 motivation behind the line of work and the taken approach.
 The second step is the creation of a dedicated topic branch in the developer's
 fork of Genode's Git repository.

 git checkout -b issue<number> genodelabs/master

 The new topic branch should be based on the
 most current genodelabs/master branch. This eases the later integration of
 the topic branch into the mainline development.

 While working on a topic branch, it is recommended to commit many small
 intermediate steps. This is useful to keep track of the line of thoughts
 during development. This history is regarded as volatile. That is, it is not
 set in stone. Hence, you as developer do not have to spend too much thoughts
 on the commits during the actual development.

 Once the work on the topic is completed and the topic branch is going to get
 integrated into the mainline development, the developer curates the
 topic-branch history so that a short and well-arranged sequence of commits
 remains. This step is usually performed by interactively editing the
 topic-branch history via the gitrebase-i command.
 In many cases,
 the entire topic branch can be squashed into a single commit. The goal behind
 this curating step is to let the mainline history document the progress at a
 level of detail that is meaningful for the users of the framework. The
 mainline history should satisfy the following:

 	

 The relationship of a commit with an issue at the issue tracker should be
 visible. For this reason, GitHub's annotations "Issue #n" and
 "Fixed #n" are added to the commit messages.

 	

 Revisiting the history between Genode releases should clearly reveal the
 changes that potentially interest the users. I.e., when writing the
 quarterly release notes, the Genode developers go through the history and
 base the release-notes documentation on
 the information contained in the commit messages. This works best if each
 topic is comprised by a few commits with meaningful descriptions. This
 becomes hard if the history contains too many details.

 	

 Each commit should represent a kind of "transaction" that can be reviewed
 independently without knowing too much context. This is hardly possible if
 intermediate steps that subsequently touch the same code are present as
 individual commits.

 	

 It should be easy to selectively revert individual topics/features using git
 revert (e.g., when trouble-shooting). This is simple when each topic is
 represented by one or just a few commits.

 Coding conventions

 Genode's source code follows time-tested conventions regarding the
 coding style and code pattern, which are important to follow. The coding style
 is described in the following document:

 	Coding-style Guidelines

 	

 http://genode.org/documentation/developer-resources/coding_style

 Writing a commit message

 Commit messages should adhere the following convention.
 The first line summarizes the commit using not more than 50 characters.
 This line will be displayed by various tools. So it should express the basic
 topic and eventually refer to an issue. For example:

 Add sanity checks in tool/tool_chain, fix #62

 If the patch refers to an existing issue, add a reference to the
 corresponding issue. If not, please consider opening an issue first. In the
 case the patch is supposed to close an existing issue, add this information
 using GitHub's conventions, e.g., by stating "Fix #45" in your commit
 message, the issue will be closed automatically, by stating "Issue #45", the
 commit will be displayed in the stream of discussion of the corresponding
 issue.

 After a blank line, a description of the patch follows. The description should
 consider the following questions:

 	

 Why is the patch needed?

 	

 How does the patch achieve the goal?

 	

 What are known consequences of this patch? Will it break API compatibility,
 or produce a follow-up issue?

 Reconsider the documentation related to your patch: If the commit message
 contains important information not present in the source code, this
 information should better be placed into the code or the accompanied
 documentation (e.g., in the form of a README file).

Genode OS Framework Foundations

 System configuration

 There are manifold principal approaches to configure different aspects of
 an operating system and the applications running on top.
 At the lowest level, there exists the opportunity to pass configuration
 information to the boot loader. This information may be evaluated
 directly by the boot loader or passed to the booted system. As an
 example for the former, some boot loaders allow for setting up a
 graphics mode depending on its configuration. Hence, the graphics mode
 to be used by the OS could be defined right at this early stage
 of booting. More prominently, however, is the mere passing of configuration
 information to the booted OS, e.g., in the form of a kernel command line or as
 command-line arguments to boot modules. The OS interprets
 boot-loader-provided data structures (i.e., multiboot info structures) to
 obtain such information. Most kernels interpret certain configuration
 arguments passed via this mechanism.
 At the OS-initialization level, before any drivers are functioning,
 the OS behavior is typically governed by configuration information
 provided along with the kernel image, i.e., an initial file-system
 image (initrd). On Linux-based systems, this information comes in the
 form of configuration files and init scripts located at well-known
 locations within the initial file-system image.
 Higher up the software stack, configuration becomes an even more diverse
 topic. I.e., the runtime behavior of a GNU/Linux-based system is
 defined by a conglomerate of configuration files, daemons and their
 respective command-line arguments, environment variables, collections
 of symlinks, and plenty of heuristics.

 The diversity and complexity of configuration mechanisms, however, is
 problematic for high-assurance computing. To attain a high level of
 assurance, Genode's architecture must be complemented by a low-complexity
 yet scalable configuration concept.
 The design of this concept takes the following considerations into account:

 	Uniformity across platforms

 	

 To be applicable across a variety of kernels and hardware platforms, the
 configuration mechanism must not rely on a particular kernel or boot loader.
 Even though boot loaders for x86-based machines usually support the
 multiboot specification and thereby the ability to supplement boot modules
 with additional command lines, boot loaders on ARM-based platforms
 generally lack this ability. Furthermore, even if a multiboot compliant
 boot loader is used, the kernel - once started - must provide a way to
 reflect the boot information to the system on top, which is not the case
 for most microkernels.

 	Low complexity

 	

 The configuration mechanism is an intrinsic part of each component. Hence,
 it affects the trusted computing base of every Genode-based system.
 For this reason, the mechanism must be easy to understand and implementable
 without the need for complex underlying OS infrastructure. As a negative
 example, the provision of configuration files via a file system would
 require each Genode-based system to support the notion of a file system
 and to define the naming of configuration files.

 	Expressiveness

 	

 Passing configuration information as command-line arguments to components
 at their creation time seems like a natural way to avoid the complexity
 of a file-based configuration mechanism.
 However, whereas command-line arguments are the tried and tested way for
 supplying program arguments in a concise way, the expressiveness
 of the approach is limited. In particular, it is ill-suited for expressing
 structured information as often found in configurations.
 Being a component-based system, Genode requires a way to
 express relationships between components, which lends itself to the
 use of a structural representation.

 	Common syntax

 	

 The requirement of a low-complexity mechanism mandates a common syntax
 across components. Otherwise, each component would need to come with a
 custom parser. Each of those parsers would eventually inflate the
 complexity of the trusted computing base. In contrast, a common syntax
 that is both expressive and simple to parse helps to avoid such
 redundancies by using a single parser implementation across all components.

 	Least privilege

 	

 Being the guiding motive behind Genode's architecture, the principle of
 least privilege needs to be applied to the access of configuration
 information. Each component needs to be able to access its own configuration
 but must not observe configuration information concerning unrelated components.
 A system-global registry of configurations or even a global namespace of
 keys for such a database would violate this principle.

 	Accommodation of dynamic workloads

 	

 Supplying configuration information at the construction time of a component
 is not sufficient for long-living components, whose behavior might need to
 be adapted at runtime.
 For example, the assignment of resources to the clients of a resource
 multiplexer might change over the lifetime of the resource multiplexer.
 Hence, the configuration concept should provide a means to update
 the configuration information of a component after it has been constructed.

 Nested configuration concept

 Genode's configuration concept is based on the ROM session interface described
 in Section Read-only memory (ROM). In contrast to a file-system interface,
 the ROM session interface is extremely simple. The client of a ROM service
 specifies the requested ROM module by its name as known by the client.
 There is neither a way to query a list of available ROM modules, nor are ROM
 modules organized in a hierarchic name space.

 	

 [image: img/nested_config]

	
 Nested system configuration

 The ROM session interface is implemented by core's ROM service to make boot
 modules available to other components. Those boot modules comprise the
 executable binaries of the init component as well as those of the components
 created by init. Furthermore, a ROM module called "config" contains the
 configuration of the init process in XML format. To obtain its
 configuration, init requests a ROM session for the ROM module "config" from
 its parent, which is core. Figure img/nested_config shows an example of
 such a config ROM module.

 	

 [image: img/config_virtualization]

	
 Successive interception of "config" ROM requests

 The config ROM module uses XML as syntax, which supports the expression of
 arbitrary structural data while being simple to parse. I.e., Genode's XML
 parser comes in the form of a single header file with less than 400 lines of
 code. Init's configuration is contained within a single <config> node.

 Each component started by init obtains its configuration by requesting
 a ROM module named "config" from its parent. Init responds to
 this request by handing out a locally-provided ROM session. Instead of
 handing out the "config" ROM module as obtained from core, it creates a new
 dataspace that solely contains the portion of init's config ROM module that
 refers to the respective child. Analogously to init's configuration,
 each child's configuration has the form of a single <config> node.
 This works recursively. From each component's perspective, including the init
 component, the mechanism for obtaining its configuration is identical it
 obtains a ROM session for a ROM module named "config" from its parent.
 The parent interposes the ROM session request as described in
 Section Interposing individual services. Figure img/config_virtualization
 shows the successive interposing of "config" ROM requests according to the
 example configuration given in Figure img/nested_config.
 At each level, the information structure within the <config> node can
 be different. Besides following the convention that a configuration has the
 form of a single <config> node, each component can introduce arbitrary
 custom tags and attributes.

 Besides being simple, the use of the ROM session interface for supplying
 configuration information has the benefit of supporting dynamic configuration
 updates over the lifetime of the config ROM session. Section
 Read-only memory (ROM) describes the update protocol between client
 and server of a ROM session. This way, the configuration of long-living
 components can be dynamically changed.

 The init component

 The init component plays a special role within Genode's component tree. It
 gets started directly by core, gets assigned all physical resources, and
 controls the execution of all subsequent component nodes, which can be further
 instances of init. Init's policy is driven by an XML-based configuration,
 which declares a number of children, their relationships, and resource
 assignments.

 Session routing

 At the parent-child interface, there are two operations that are subject to
 policy decisions of the parent: the child announcing a service and the
 child requesting a service. If a child announces a service, it is up to the parent
 to decide if and how to make this service accessible to its other children.
 When a child requests a service, the parent may deny the session request,
 delegate the request to its own parent, implement the requested service
 locally, or open a session at one of its other children. This decision may
 depend on the service requested or the session-construction arguments provided
 by the child. Apart from assigning resources to children, the central
 element of the policy implemented in the parent is a set of rules to
 route session requests. Therefore, init's configuration concept is laid out
 around child components and the routing of session requests originating from
 those components. The mechanism is best illustrated by an example:

 <config>
 <parent-provides>
 <service name="PD"/>
 <service name="ROM"/>
 <service name="CPU"/>
 <service name="LOG"/>
 </parent-provides>
 <start name="timer" caps="100">
 <resource name="RAM" quantum="1M"/>
 <provides> <service name="Timer"/> </provides>
 <route>
 <service name="PD"> <parent/> </service>
 <service name="ROM"> <parent/> </service>
 <service name="CPU"> <parent/> </service>
 <service name="LOG"> <parent/> </service>
 </route>
 </start>
 <start name="test-timer" caps="200">
 <resource name="RAM" quantum="1M"/>
 <route>
 <service name="Timer"> <child name="timer"/> </service>
 <service name="PD"> <parent/> </service>
 <service name="ROM"> <parent/> </service>
 <service name="CPU"> <parent/> </service>
 <service name="LOG"> <parent/> </service>
 </route>
 </start>
 </config>

 First, there is the declaration of services provided by the parent of the
 configured init instance. In this case, we declare that the parent provides a
 a LOG service.
 For each child to start, there is a <start> node describing the assigned RAM
 and capability budget, declaring services provided by the child,
 and holding a routing table for session requests originating from the child.
 The first child is called "timer" and implements the "Timer" service.
 The second component called "test-timer" is a client of the timer service. In
 its routing table, we see that requests for "Timer" sessions are routed to the
 "timer" child whereas requests for core's services are routed to
 init's parent. Per-child service routing rules provide a flexible way to
 express arbitrary client-server relationships. For example, service requests
 may be transparently mediated through special policy components acting upon
 session-construction arguments. There might be multiple children implementing
 the same service, each targeted by different routing tables. If there exists no
 valid route to a requested service, the service is denied. In the example
 above, the routing tables act effectively as a white list of services the child
 is allowed to use.

 Routing based on session labels

 Access-control policies in Genode systems are based on session labels. When a
 server receives a new session request, the session label is passed along with
 the request.

 A session label is a string that is assembled by the components that are
 involved with routing the session request from the client along the branches
 of the component tree to the server. The client may specify the least
 significant part of the label by itself. This part gives the parent a hint
 for routing the request. For example, a client may create two file-system
 sessions, one labeled with "home" and one labeled with "bin". The parent may
 take this information into account and route the individual requests to
 different file-system servers. The label is successively superseded (prefixed)
 by additional parts along the chain of components on the route of the session
 request. The first part of the label is the most significant part as it is
 imposed by the component in the intermediate proximity of the server. The last
 part is the least trusted part of the label because it originated from the
 client. Once the session request arrives at the server, the server takes the
 session label as the key to select a server-side policy as described in
 Section Server-side policy selection.

 In most cases, routing decisions are simply based on the type of the requested
 sessions. However, by equipping <service> nodes with the following
 attributes, it is possible to take session labels as a criterion for the
 routing of session requests into account.

 	label="<string>"

 	

 The session label must perfectly match the specified
 string.

 	label_prefix="<string>"

 	

 The first part of the label must match the
 specified string.

 	label_suffix="<string>"

 	

 The end of the label must match the
 specified string.

 	unscoped_label="<string>"

 	

 The session label including the child's name
 prefix must perfectly match the specified string. In contrast to the
 label attribute, which refers to the child-defined label, the unscoped_label
 can refer to the child's environment sessions, which have no client-defined
 label because they are initiated by init itself.

 	label_last="<string>"

 	

 The part after the last "->" delimiter must match the
 specified string. This part usually refers to a requested resource such as
 the name of a ROM module. If no delimiter is present, the label must be an
 exact match.

 If no attributes are present, the route matches. The attributes can be
 combined. If any of the specified attributes mismatch, the route is
 neglected.
 If multiple <service> nodes match in init's routing configuration, the first
 matching rule is taken. So the order of the nodes is important.

 Wildcards

 In practice, usage scenarios become more complex than the basic example,
 increasing the size of routing tables. Furthermore, in many practical cases,
 multiple children may use the same set of services and require duplicated
 routing tables within the configuration. In particular during development, the
 elaborative specification of routing tables tend to become an inconvenience.
 To alleviate this problem, there are two mechanisms, namely wildcards and a
 default route.
 Instead of specifying a list of individual service routes targeting the same
 destination, the wildcard <any-service> becomes handy. For example, instead
 of specifying

 <route>
 <service name="ROM"> <parent/> </service>
 <service name="LOG"> <parent/> </service>
 <service name="PD"> <parent/> </service>
 <service name="CPU"> <parent/> </service>
 </route>

 the following shortform can be used:

 <route>
 <any-service> <parent/> </any-service>
 </route>

 The latter version is not as strict as the first one because it permits the
 child to create sessions at the parent, which were not white listed in the
 elaborative version. Therefore, the use of wildcards is discouraged for
 configuring untrusted components. Wildcards and explicit routes may be combined
 as illustrated by the following example:

 <route>
 <service name="LOG"> <child name="nitlog"/> </service>
 <any-service> <parent/> </any-service>
 </route>

 The routing table is processed starting with the first entry. If the route
 matches the service request, it is taken, otherwise the remaining
 routing-table entries are visited. This way, the explicit service route of
 "LOG" sessions to the "nitlog" child shadows the LOG service provided by the
 parent.

 To allow a child to use services provided by arbitrary other children, there
 is a further wildcard called <any-child>. Using this wildcard, such a policy
 can be expressed as follows:

 <route>
 <any-service> <parent/> </any-service>
 <any-service> <any-child/> </any-service>
 </route>

 This rule would delegate all session requests referring to one of the parent's
 services to the parent. If no parent service matches the session request, the
 request is routed to any child providing the service. The rule can be further
 abbreviated to:

 <route>
 <any-service> <parent/> <any-child/> </any-service>
 </route>

 Init detects potential ambiguities caused by multiple children providing the
 same service. In this case, the ambiguity must be resolved using an explicit
 route preceding the wildcards.

 Default routing

 To reduce the need to specify the same routing table for many children
 in one configuration, there is a <default-route> mechanism. The default
 route is declared within the <config> node and used for each <start>
 entry with no <route> node. In particular during development, the default
 route becomes handy to keep the configuration tidy and neat.

 The combination of explicit routes and wildcards is designed to scale well from
 being convenient to use during development towards being highly secure at
 deployment time. If only explicit rules are present in the configuration, the
 permitted relationships between all processes are explicitly defined and can be
 easily verified.

 Resource assignment

 Physical memory budget

 Each <start> node must be equipped with a declaration of the amount of
 RAM assigned to the child via a <resource> sub node.

 <resource name="RAM" quantum="1M"/>

 If the specified amount exceeds the available resources,
 the available resources are assigned almost completely to the child.
 This makes it possible to assign all remaining resources to the last child by
 simply specifying an overly large quantum.
 In this case, init retains only a small amount of quota for itself, which is used to cover
 indirect costs such as a few capabilities created on behalf of the children,
 or memory used for buffering configuration data. The preserved amount
 can be configured as follows:

 <config>
 ...
 <resource name="RAM" preserve="1M"/>
 ...
 </config>

 If not specified, init has a reasonable default of 160K (on 32 bit) and
 320K (on 64 bit).

 Capability budget

 Each component requires a certain amount of capabilities to live. At startup,
 several capabilities are created along with the component's environment
 sessions, in particular its PD session. At lifetime, the component consumes
 capabilities when creating signal handlers or RPC objects. Since the
 system-global amount of capabilities is a bounded resource, which depends on
 the used kernel and the kernel configuration, Genode subjects the allocation
 of capabilities to the same rigid regime as for physical memory. First, the
 creation of capabilities is restricted by resource quotas explicitly assigned
 to components. Second, capability budgets can be traded between clients and
 servers such that servers are able to account capability allocations to their
 clients.

 Each <start> node can be equipped with a caps attribute with
 the amount of capabilities assigned to the component. As a rule of
 thumb, the setup costs of a component are 35 capabilities. Hence, for
 typical components, an amount of 100 is a practical value.
 To alleviate the need to equip each <start> node with the same default
 value, the init configuration accepts a default declaration as follows:

 <default caps="100"/>

 Unless a <start> node is equipped with a custom caps attribute, the
 default value is used.

 If a component runs out of capabilities, core's PD service prints a warning to
 the log. To observe the consumption of capabilities per component in detail,
 core's PD service is equipped with a diagnostic mode, which can be enabled via
 the diag attribute in the target node of init's routing rules. E.g., the
 following route enables the diagnostic mode for the PD session:

 <route>
 <service name="PD"> <parent diag="yes"/> </service>
 ...
 </route>

 With the diag attribute enabled, core prints a log message each time the
 PD consumes, frees, or transfers its capability budget.

 Multiple instantiation of a single ELF binary

 Each <start> node requires a unique name attribute. By default, the
 value of this attribute is used as ROM module name for obtaining the ELF
 binary from the parent. If multiple instances of a component with the same
 ELF binary are needed, the binary name can be explicitly specified
 using a <binary> sub node of the <start> node:

 <binary name="filename"/>

 This way, a unique child name can be defined independently from the
 binary name.

 Session-label rewriting

 As explained in section Session routing, init routes session requests by
 taking the requested service type and the
 session label into account. The latter may be used by the server as a key for
 selecting a policy at the server side. To simplify server-side policies, init
 supports the rewriting of session labels in the target node
 of a matching session route. For example, a interactive shell ("noux") may
 have the following session route for the "home" file system:

<route>
 <service name="File_system" label="home">
 <child name="vfs"/>
 </service>
 ...
</route>

 At the "vfs" file-system server, the label of the file-system session will
 appear as "noux -> home". This information may be evaluated by the vfs's
 server-side policy. However, when renaming the noux instance, we'd need to
 update this server-side policy.

 With the label-rewriting mechanism, the client's identity can be hidden from
 the server. The label can instead represent the role of the client, or a name
 of a physical resource. For example, the route could be changed to this:

<route>
 <service name="File_system" label="home">
 <child name="vfs" label="primary_user"/>
 </service>
 ...
</route>

 When the vfs receives the session request, it is presented with the label
 "primary_user". The fact that the client is "noux" is not taken into account
 for the server-side policy selection.

 Nested configuration

 Each <start> node can host a <config> sub node.
 As described in Section Nested configuration concept, the content of this
 sub node is provided to the child when a ROM session for the module name
 "config" is requested.
 Thereby, arbitrary configuration parameters can be passed to the
 child. For example, the following configuration starts the timer-test within an
 init instance within another init instance. To show the flexibility of init's
 service routing facility, the "Timer" session of the second-level timer-test
 child is routed to the timer service started at the first-level init instance.

 <config>
 <parent-provides>
 <service name="LOG"/>
 <service name="ROM"/>
 <service name="CPU"/>
 <service name="PD"/>
 </parent-provides>
 <start name="timer" caps="100">
 <resource name="RAM" quantum="1M"/>
 <provides><service name="Timer"/></provides>
 <route>
 <any-service> <parent/> </any-service>
 </route>
 </start>
 <start name="init" caps="1000">
 <resource name="RAM" quantum="10M"/>
 <config>
 <parent-provides>
 <service name="Timer"/>
 <service name="LOG"/>
 <service name="ROM"/>
 <service name="CPU"/>
 <service name="PD"/>
 </parent-provides>
 <start name="test-timer" caps="200">
 <resource name="RAM" quantum="1M"/>
 <route>
 <any-service> <parent/> </any-service>
 </route>
 </start>
 </config>
 <route>
 <service name="Timer"> <child name="timer"/> </service>
 <any-service> <parent/> </any-service>
 </route>
 </start>
 </config>

 The services ROM, LOG, CPU, and PD are required by the second-level
 init instance to create the timer-test component.
 As illustrated by this example, the use of nested configurations
 enables the construction of arbitrarily complex component trees via a single
 configuration.

 Configuring components from distinct ROM modules

 As an alternative to specifying the component configurations of all <start>
 nodes via <config> sub nodes, component configurations may be placed in
 separate ROM modules by facilitating the session-label rewriting mechanism
 described in Section Session-label rewriting:

 <start name="nitpicker">
 <resource name="RAM" quantum="1M"/>
 <route>
 <service name="ROM" label="config">
 <parent label="nitpicker.config"/>
 </service>
 ...
 </route>
 ...
 </start>

 With this routing rule in place, a ROM session request for the module "config"
 is routed to the parent and appears at the parent's ROM service under the
 label "nitpicker.config".

 Assigning subsystems to CPUs

 Most multi-processor (MP) systems have topologies that can be represented on a
 two-dimensional coordinate system. CPU nodes
 close to each other are expected to have closer relationship than distant
 nodes. In a large MP system, it is natural to assign clusters of closely
 related nodes to a given workload. As described in Section
 Recursive system structure, Genode's architecture is based on a strictly
 hierarchic organizational structure. Thereby, it lends itself to the idea of
 applying this successive virtualization of resources to the problem of clustering
 CPU nodes.

 	

 [image: img/affinity_spaces]

	
 Successive virtualization of CPU affinity spaces by nested instances of init

 Each component within the component tree has a component-local view on a
 so-called affinity space, which is a two-dimensional coordinate space. If the
 component creates a new subsystem, it can assign a portion of its own affinity
 space to the new subsystem by imposing a rectangular affinity location to the
 subsystem's CPU session. Figure img/affinity_spaces illustrates the idea.

 Following from the expression of affinities as a rectangular location within a
 component-local affinity space, the assignment of subsystems to CPU nodes
 consists of two parts: the definition of the affinity space dimensions as used
 for the init instance, and the association of subsystems with affinity locations
 relative to the affinity space.
 The affinity space is configured as a sub node of the <config> node. For
 example, the following declaration describes an affinity space of 4x2:

 <config>
 ...
 <affinity-space width="4" height="2" />
 ...
 </config>

 Subsystems can be constrained to parts of the affinity space using the
 <affinity> sub node of a <start> entry:

 <config>
 ...
 <start name="loader">
 <affinity xpos="0" ypos="1" width="2" height="1" />
 ...
 </start>
 ...
 </config>

 As illustrated by this example, the numbers used in the declarations for this
 instance of init are not directly related to physical CPUs.
 If the machine has merely two cores, init's affinity space would be mapped to
 the range 0,1 of physical CPUs. However, in a machine with 16x16 CPUs, the
 loader would obtain 8x8 CPUs with the upper-left CPU at position (4,0).

 Priority support

 The number of CPU priorities to be distinguished by init can be specified with
 the prio_levels attribute of the <config> node. The value must be a power of
 two. By default, no priorities are used. To assign a priority to a child
 process, a priority value can be specified as priority attribute of the
 corresponding <start> node. Valid priority values lie in the range of

 -prio_levels + 1 (maximum priority degradation) to 0 (no priority degradation).

 Propagation of exit events

 A component can notify its parent about its graceful exit via the exit RPC
 function of the parent interface. By default, init responds to such a
 notification from one of its children by merely printing a log message but
 ignores it otherwise. However, there are scenarios where the exit of a
 particular child should result in the exit of the entire init component. To
 propagate the exit of a child to the parent of init, start nodes can host the
 optional sub node <exit> with the attribute propagate set to "yes".

 <config>
 <start name="noux">
 <exit propagate="yes"/>
 ...
 </start>
 </config>

 The exit value specified by the exiting child is forwarded to init's parent.

 State reporting

 When used in a nested fashion, init can be configured to report its internal
 state in the form of a "state" report by placing a <report> node into init's
 configuration. The report node accepts the following arguments (with their
 default values shown):

 	delay_ms="100"

 	

 specifies the number of milliseconds to wait before
 producing a new report. This way, many consecutive state changes -
 like they occur during startup - do not result in an overly
 large number of reports but are merged into one final report.

 	buffer="4K"

 	

 the maximum size of the report in bytes. The attribute
 accepts the use of K/M/G as units.

 	init_ram="no"

 	

 if enabled, the report will contain a <ram> node
 with the memory statistics of init.

 	init_caps="no"

 	

 if enabled, the report will contain a <caps> node
 with the capability-allocation statistics of init.

 	ids="no"

 	

 supplement the children in the report with unique IDs, which
 may be used to infer the lifetime of children across configuration
 updates in the future.

 	requested="no"

 	

 if enabled, the report will contain information about
 all session requests initiated by the children.

 	provided="no"

 	

 if enabled, the report will contain information about
 all sessions provided by all servers.

 	session_args="no"

 	

 level of detail of the session information
 generated via requested or provided.

 	child_ram="no"

 	

 if enabled, the report will contain a <ram> node
 for each child based on the information obtained from the child's PD
 session.

 	child_caps="no"

 	

 if enabled, the report will contain a <caps> node
 for each child based on the information obtained from the child's PD
 session.

 Note that the state reporting feature cannot be used for the initial
 instance of init started by core. It depends on the "Timer" and "Report"
 services, which are provided by higher-level components only.

 Init verbosity

 To ease debugging, init can be instructed to print diverse status
 information as LOG output. To enable the verbose mode, assign the value "yes"
 to the verbose attribute of the <config> node.

 Service forwarding

 In nested scenarios, init is able to act as a server that forwards
 session requests to its children. Session requests can be routed
 depending on the requested service type and the session label
 originating from init's parent.

 The feature is configured by one or multiple <service> nodes hosted in
 init's <config> node. The routing policy is selected via the regular
 server-side policy-selection mechanism, for example:

 <config>
 ...
 <service name="LOG">
 <policy label="noux">
 <child name="terminal_log" label="important"/>
 </policy>
 <default-policy> <child name="nitlog"/> </default-policy>
 </service>
 ...
 </config>

 Each policy node must have a <child> sub node, which denotes the name of the
 server with the name attribute. The optional label attribute defines
 the session label presented to the server, analogous to how the
 rewriting of session labels works in session routes. If not specified,
 the client-provided label is presented to the server as is.

Genode OS Framework Foundations

 Under the hood

 This chapter gives insight into the inner workings of the Genode OS
 framework. In particular, it explains how the concepts explained in Chapter
 Architecture are realized on different kernels and hardware platforms.

 Component-local startup code and linker scripts

 All Genode components including core rely on the same startup code, which
 is roughly outlined at the end of Section Component creation. This
 section revisits the required steps in more detail and refers to the corresponding
 points in the source code. Furthermore, it provides background information
 about the linkage of components, which is closely related to the startup
 code.

 Linker scripts

 Under the hood, the Genode build system uses three different linker scripts
 located at _repos/base/src/ld/_:

 	genode.ld

 	

 is used for statically linked components, including core,

 	genode_dyn.ld

 	

 is used for dynamically linked components, i.e., components
 that are linked against at least one shared library,

 	genode_rel.ld

 	

 is used for shared libraries.

 Additionally, there exists a special linker script for the dynamic linker
 (Section Dynamic linker).

 Each program image generated by the linker generally consists of three parts,
 which appear consecutively in the component's virtual memory.

 	

 A read-only "text" part contains sections for code, read-only
 data, and the list of global constructors and destructors.

 The startup code is placed in a dedicated section .text.crt0, which
 appears right at the start of the segment. Thereby the link address of
 the component is known to correspond to the ELF entrypoint (the first
 instruction of the assembly startup code).
 This is useful when converting the ELF image of the base-hw version of
 core into a raw binary. Such a raw binary can be loaded directly into
 the memory of the target platform without the need for an ELF loader.

 The mechanisms for generating the list of constructors and destructors
 differ between CPU architecture and are defined by the architecture's
 ABI. On x86, the lists are represented by .ctors.* and .dtors.*.
 On ARM, the information about global constructors is represented by
 .init_array and there is no visible information about global destructors.

 	

 A read-writable "data" part that is pre-populated with data.

 	

 A read-writable "bss" part that is not physically present in the binary but
 known to be zero-initialized when the ELF image is loaded.

 The link address is not defined in the linker script but specified as
 linker argument. The default link address is specified in a platform-specific
 spec file, e.g., repos/base-nova/mk/spec/nova.mk for the NOVA platform.
 Components that need to organize their virtual address space in a special
 way (e.g., a virtual machine monitor that co-locates the guest-physical
 address space with its virtual address space) may specify link addresses
 that differ from the default one by overriding the LD_TEXT_ADDR value.

 ELF entry point

 As defined at the start of the linker script via the ENTRY directive, the
 ELF entrypoint is the function _start. This function is located at the very
 beginning of the .text.crt0 section. See the Section Startup code for
 more details.

 Symbols defined by the linker script

 The following symbols are defined by the linker script and used by the
 base framework.

 	_prog_img_beg,_prog_img_data,_prog_img_end

 	

 Those symbols mark the start of the "text" part, the start of the "data"
 part (the end of the "text" part), and the end of the "bss" part.
 They are used by core to exclude those virtual memory ranges from
 the core's virtual-memory allocator (core-region allocator).

 	_parent_cap,_parent_cap_thread_id,_parent_cap_local_name

 	

 Those symbols are located at the beginning of the "data" part.
 During the ELF loading of a new component, the parent writes
 information about the parent capability to this location (the start
 of the first read-writable ELF segment). See the corresponding code
 in the Loaded_executable constructor in base/src/lib/base/child_process.cc.
 The use of the information depends on the base platform. E.g.,
 on a platform where a capability is represented by a tuple of a global
 thread ID and an object ID such as OKL4 and L4ka::Pistachio, the
 information is taken as verbatim values. On platforms that fully
 support capability-based security without the use of any form of
 a global name to represent a capability, the information remains unused.
 Here, the parent capability is represented by the same known
 local name in all components.

 Even though the linker scripts are used across all base platforms, they
 contain a few platform-specific supplements that are needed to support
 the respective kernel ABIs. For example, the definition of the symbol
 __l4sys_invoke_indirect is needed only on the Fiasco.OC platform and
 is unused on the other base platforms. Please refer to the comments
 in the linker script for further explanations.

 Startup code

 The execution of the initial thread of a new component starts at the ELF
 entry point, which corresponds to the _start function. This is an
 assembly function defined in repos/base/src/lib/startup/spec/<arch>/crt0.s
 where <arch> is the CPU architecture (x86_32, x86_64, or ARM).

 Assembly startup code

 The assembly startup code is position-independent code (PIC).
 Because the Genode base libraries are linked against both statically-linked
 and dynamically linked executables, they have to be compiled as PIC code.
 To be consistent with the base libraries, the startup code needs to be
 position-independent, too.

 The code performs the following steps:

 	

 Saving the initial state of certain CPU registers. Depending on the
 used kernel, these registers carry information from the
 kernel to the core component. More details about this information
 are provided by Section Bootstrapping and allocator setup. The
 initial register values are saved in global variables named
 initial<register>. The global variables are located in the BSS
 segment. Note that those variables are used solely by core.

 	

 Setting up the initial stack. Before the assembly code can call any
 higher-level C function, the stack pointer must be initialized to
 point to the top of a valid stack. The initial stack is located in the
 BSS section and referred to by the symbol _stack_high. However,
 having a stack located within the BSS section is dangerous. If it
 overflows (e.g., by declaring large local variables, or by recursive
 function calls), the stack would silently overwrite parts of the
 BSS and DATA sections located below the lower stack boundary. For prior
 known code, the stack can be dimensioned to a reasonable size. But
 for arbitrary application code, no assumption about
 the stack usage can be made. For this reason, the initial stack cannot
 be used for the entire lifetime of the component. Before any
 component-specific code is called, the stack needs to be relocated to
 another area of the virtual address space where the lower bound of the
 stack is guarded by empty pages. When using such a "real" stack, a
 stack overflow will produce a page fault, which can be handled or at least
 immediately detected. The initial stack is solely used to perform the
 steps required to set up the real stack. Because those steps are the same for
 all components, the usage of the initial stack is bounded.

 	

 Because the startup code is used by statically linked components as well as
 the dynamic linker, the startup immediately calls the init_rtld hook
 function.
 For regular components, the function does not do anything. The default
 implementation in init_main_thread.cc at repos/base/src/lib/startup/ is a weak
 function. The dynamic linker provides a non-weak implementation, which
 allows the linker to perform initial relocations of itself very early at
 the dynamic linker's startup.

 	

 By calling the init_main_thread function defined in
 repos/base/src/lib/startup/init_main_thread.cc, the assembly code triggers
 the execution of all the steps needed for the creation of the real stack.
 The function is implemented in C++, uses the initial stack, and returns
 the address of the real stack.

 	

 With the new stack pointer returned by init_main_thread, the assembly
 startup code is able to switch the stack pointer from the initial stack to
 the real stack. From this point on, stack overflows cannot easily corrupt
 any data.

 	

 With the real stack in place, the assembly code finally passes the control
 over to the C++ startup code provided by the _main function.

 Initialization of the real stack along with the Genode environment

 As mentioned above, the assembly code calls the init_main_thread function
 (located in repos/base/src/lib/startup/init_main_thread.cc) for setting up the
 real stack for the program. For placing a stack in a dedicated portion of the
 component's virtual address space, the function needs to overcome two
 principle problems:

 	

 It needs to obtain the backing store used for the stack, i.e.,
 allocating a dataspace from the component's PD session as initialized
 by the parent.

 	

 It needs to preserve a portion of its virtual address space for placing
 the stack and make the allocated memory visible within this portion.

 In order to solve both problems, the function needs to obtain the capability
 for its PD session from its parent. This comes down to
 the need to perform RPC calls. First, for requesting the PD
 session capability from the parent, and second, for invoking the session
 capability to perform the RAM allocation and region-map attach operations.

 The RPC mechanism is based on C++. In particular, the mechanism supports
 the propagation of C++ exceptions across RPC interfaces. Hence,
 before being able to perform RPC calls, the program must initialize
 the C++ runtime including the exception-handling support.
 The initialization of the C++ runtime, in turn, requires support for
 dynamically allocating memory. Hence, a heap must be available.
 This chain of dependencies ultimately results in the need to construct the
 entire Genode environment as a side effect of initializing the real stack of
 the program.

 During the construction of the Genode environment, the program requests its
 own CPU, PD, and LOG sessions from its parent.

 With the environment constructed, the program is able to interact
 with its own PD session and can principally realize the
 initialization of the real stack. However, instead of merely allocating
 a new RAM dataspace and attaching the dataspace to the address space of the
 PD session, a so-called stack area is used. The stack area
 is a secondary region map that is attached as a dataspace to the component's
 address-space region map.
 This way, virtual-memory allocations within the stack area can be
 managed manually. I.e., the spaces between the stacks of different threads are
 guaranteed to remain free from any attached dataspaces.
 The stack area of a component is created as part of the component's PD
 session. The environment initialization code requests its region-map
 capability via Pd_session::stack_area and attaches it as a managed dataspace
 to the component's address space.

 Component-dependent startup code

 With the Genode environment constructed and the initial stack switched
 to a proper stack located in the stack area, the component-dependent
 startup code of the _main function in repos/base/src/lib/startup/_main.cc can be
 executed. This code is responsible for calling the global constructors
 of the program before calling the program's main function.

 In accordance to the established signature of the main function, taking
 an argument list and an environment as arguments, the startup code supplies
 these arguments but uses dummy default values. However, since the values
 are taken from the global variables genode_argv, genode_argc, and
 genode_envp, a global constructor is able to override the default values.

 The startup code in _main.cc is accompanied with support for atexit
 handling. The atexit mechanism allows for the registration of handlers
 to be called at the exit of the program. It is provided in the form of
 a POSIX API by the C runtime. But it is also used by the compiler to
 schedule the execution of the destructors of function-local static objects.
 For the latter reason, the atexit mechanism cannot be merely provided
 by the (optional) C runtime but must be supported by the base library.

 C++ runtime

 Genode is implemented in C++ and relies on all C++ features required to use
 the language in its idiomatic way. This includes the use of exceptions
 and runtime-type information.

 Rationale behind using exceptions

 Compared to return-based error handling as prominently used in C programs, the
 C++ exception mechanism is much more complex. In particular, it requires the use
 of a C++ runtime library that is called as a back-end by the exception handling code
 and generated by the compiler. This library contains the functionality needed to
 unwind the stack and a mechanism for obtaining runtime type
 information (RTTI). The C++ runtime libraries that come with common tool
 chains, in turn, rely on a C library for performing dynamic memory
 allocations, string operations, and I/O operations. Consequently, C++ programs
 that rely on exceptions and RTTI implicitly depend on a C library. For this
 reason, the use of those C++ features is universally disregarded for low-level
 operating-system code that usually does not run in an environment where a
 complete C library is available.

 In principle, C++ can be used without exceptions and RTTI (by passing the
 arguments -fno-exceptions and -fno-rtti to GCC). However, without
 those features, it is hardly possible to use the language as designed.

 For example, when the operator new is used, it performs two steps:
 Allocating the memory needed to hold the to-be-created object and calling
 the constructor of the object with the return value of the allocation
 as this pointer. In the event that the memory allocation fails, the only
 way for the allocator to propagate the out-of-memory condition is throwing an
 exception. If such an exception is not thrown, the constructor would be
 called with a null as this pointer.

 Another example is the handling of errors during the construction of an
 object. The object construction may consist of several consecutive
 steps such as the construction of base classes and aggregated objects.
 If one of those steps fails, the construction of the overall object remains
 incomplete. This condition must be propagated to the code that issued the
 object construction. There are two principle approaches:

 	

 The error condition can be kept as an attribute in the object. After
 constructing the object, the user of the object may detect the error
 condition by requesting the attribute value.
 However, this approach is plagued by the following problems.

 First, the failure of one step
 may cause subsequent steps to fail as well. In the worst case, if the
 failed step initializes a pointer that is passed to subsequent
 steps, the subsequent steps may use an uninitialized pointer. Consequently,
 the error condition must eventually be propagated to subsequent steps,
 which, in turn, need to be implemented in a defensive way.

 Second, if the construction failed, the object exists but it is inconsistent.
 In the worst case, if the user of the object misses to check for the
 successful construction, it will perform operations on an inconsistent
 object. But even in the good case, where the user detects the
 incomplete construction and decides to immediately destruct the object, the
 destruction is error prone.
 The already performed steps may have had side effects such as resource
 allocations. So it is important to revert all the successful steps by
 invoking their respective destructors. However, when destructing the
 object, the destructors of the incomplete steps are also called.
 Consequently, such destructors need to be implemented in a defensive
 manner to accommodate this situation.

 Third, objects cannot have references that depend on potentially failing
 construction steps. In contrast to a pointer that may be marked as
 uninitialized by being a null pointer, a reference is, by definition,
 initialized once it exists. Consequently, the result of such a step can
 never be passed as reference to subsequent steps. Pointers must be used.

 Fourth, the mere existence of incompletely constructed
 objects introduces many variants of possible failures that need
 to be considered in the code. There may be many different stages of
 incompleteness. Because of the third problem,
 every time a construction step takes the result of a previous step as an
 argument, it explicitly has to consider the error case.
 This, in turn, tremendously inflates the test space of the code.

 Furthermore, there needs to be a convention of how the completion of an
 object is indicated. All programmers have to learn and follow the convention.

 	

 The error condition triggers an exception. Thereby, the object construction
 immediately stops at the erroneous step. Subsequent steps are not
 executed at all. Furthermore, while unwinding the stack, the exception
 mechanism reverts all already completed steps by calling their respective
 destructors. Consequently, the construction of an object can be considered
 as a transaction. If it succeeds, the object is known to be completely
 constructed. If it fails, the object immediately ceases to exist.

 Thanks to the transactional semantics of the second variant, the state space
 for potential error conditions (and thereby the test space) remains small.
 Also, the second variant facilitates the use of references as class members,
 which can be safely passed as arguments to subsequent constructors. When
 receiving such a reference as argument (as opposed to a pointer), no
 validity checks are needed.
 Consequently, by using exceptions, the robustness of object-oriented code
 (i.e., code that relies on C++ constructors) can be greatly improved over code
 that avoids exceptions.

 Bare-metal C++ runtime

 Acknowledging the rationale given in the previous section, there is
 still the problem of the complexity added by the exception mechanism.
 For Genode, the complexity of the trusted computing base is a fundamental
 metric. The C++ exception mechanism with its dependency to the C library
 arguably adds significant complexity. The code complexity of a C
 library exceeds the complexity of the fundamental components (such as the
 kernel, core, and init) by an order of magnitude. Making the fundamental
 components depend on such a C library would jeopardize one of Genode's most
 valuable assets, which is its low complexity.

 To enable the use of C++ exceptions and runtime type information but
 avoid the incorporation of an entire C library into the trusted computing
 base, Genode comes with a customized C++ runtime that does not depend on
 a C library. The C++ runtime libraries are provided by the tool chain,
 which interface with the symbols provided by Genode's C++ support code
 (repos/base/src/lib/cxx).

 Unfortunately, the interface used by the C++ runtime does not reside
 in a specific namespace but it is rather a subset of the POSIX API. When
 linking a real C library to a Genode component, the symbols present in the
 C library would collide with the symbols present in Genode's C++ support code.
 For this reason, the C++ runtime (of the compiler) and Genode's C++
 support code are wrapped in a single library (repos/base/lib/mk/cxx.mk) in
 a way that all POSIX functions remain hidden. All the references of the
 C++ runtime are resolved by the C++ support code, both wrapped in the cxx
 library. To the outside, the cxx library solely exports the CXA ABI as
 required by the compiler.

 Interaction of core with the underlying kernel

 Core is the root of the component tree. It is initialized and started
 directly by the underlying kernel and has two purposes. First, it makes
 the low-level physical resources of the machine available to other components
 in the form of services. These resources are physical memory, processing
 time, device resources, initial boot modules, and protection mechanisms (such
 as the MMU, IOMMU, and virtualization extensions). It thereby
 hides the peculiarities of the used kernel behind an API that is uniform
 across all kernels supported by Genode. Core's second purpose is the
 creation of the init component by using its own services and following the
 steps described in Section Component creation.

 Even though core is executed in user mode, its role as the root of the
 component tree makes it as critical as the kernel. It just happens to be
 executed in a different processor mode. Whereas regular components solely
 interact with the kernel when performing inter-component communication, core
 interplays with the kernel more intensely. The following subsections go
 into detail about this interplay.

 The description tries to be general across the various kernels supported
 by Genode. Note, however, that a particular kernel may deviate from the
 general description.

 System-image assembly

 A Genode-based system consists of potentially many boot modules. But boot
 loaders - in particular on ARM platforms - usually support the loading of a
 single system image only. To unify the boot procedure across kernels and CPU
 architectures, on all kernels except Linux, Genode merges boot modules
 together with the core component into a single image.

 The core component is actually built as a library. The library
 description file is specific for each platform and located at
 lib/mk/spec/<pf>/core.mk where <pf> corresponds to the
 hardware platform used. It includes the platform-agnostic lib/mk/core.inc file.
 The library contains everything core needs (including the C++ runtime and
 the core code) except the following symbols:

 	_boot_modules_headers_begin and _boot_modules_headers_end

 	

 Between those symbols, core expects an array of boot-module header
 structures. A boot-module header contains the name, core-local
 address, and size of a boot module. This meta data is used by
 core's initialization code in src/core/platform.cc to populate the ROM
 service with modules.

 	_boot_modules_binaries_begin and _boot_modules_binaries_end

 	

 Between those symbols, core expects the actual module data.
 This range is outside the core image (beyond _prog_img_end).
 In contrast to the boot-module headers, the modules reside in a
 separate section that remains unmapped within core's virtual address
 space. Only when access to a boot module is required by core (i.e., the
 ELF binary of init during the creation of the init component), core
 makes the module visible within its virtual address space.

 Making the boot modules invisible to core has two benefits. The
 integrity of the boot modules does not depend on core. Even in the
 presence of a bug in core, the boot modules cannot be accidentally
 overwritten. Second, no page-table entries are needed to map
 the modules into the virtual address space of core. This is particularly
 beneficial when using large boot modules such as a complete disk image.
 If incorporated into the core image, page-table
 entries for the entire disk image would need to be allocated at
 the initialization time of core.

 These symbols are defined in an assembly file called boot_modules.s.
 When building core stand-alone, the final linking stage combines the
 core library with the dummy boot_modules.s file located at
 src/core/boot_modules.s.
 But when using the run tool (Section Run tool) to integrate a
 bootable system image, the run tool dynamically generates a version of
 boot_modules.s depending on the boot modules listed in the run script
 and repeats the final linking
 stage of core by combining the core library with the generated
 boot_modules.s file.
 The generated file is placed at <build-dir>/var/run/<scenario>/
 and incorporates the boot modules using the assembler's .incbin directive.
 The result of the final linking stage is an executable ELF binary that
 contains both core and the boot modules.

 Bootstrapping and allocator setup

 At boot time, the kernel passes information about the physical resources and
 the initial system state to core. Even though the mechanism and format of this
 information varies from kernel to kernel, it generally covers the following
 aspects:

 	

 A list of free physical memory ranges

 	

 A list of the physical memory locations of the boot modules along with their
 respective names

 	

 The number of available CPUs

 	

 All information needed to enable the initial thread to perform kernel
 operations

 Core's allocators

 Core's kernel-specific platform initialization code (core/platform.cc)
 uses this information to initialize the allocators used for keeping track
 of physical resources. Those allocators are:

 	RAM allocator

 	

 contains the ranges of the available physical memory

 	I/O memory allocator

 	

 contains the physical address ranges of unused
 memory-mapped I/O resources. In general, all ranges not initially present in
 the RAM allocator are considered to be I/O memory.

 	I/O port allocator

 	

 contains the I/O ports on x86-based platforms that are
 currently not in use. This allocator is initialized with the entire
 I/O port range of 0 to 0xffff.

 	IRQ allocator

 	

 contains the IRQs that are associated with IRQ sessions.
 This allocator is initialized with the entirety of the available IRQ
 numbers.

 	Core-region allocator

 	

 contains the virtual memory regions of core that
 are not in use.

 The RAM allocator and core-region allocator are subsumed in the so-called
 core-memory allocator. In addition to aggregating both allocators, the
 core-memory allocator allows for the allocation of core-local virtual-memory
 regions that can be used for holding core-local objects. Each region
 allocated from the core-memory allocator has to satisfy three conditions:

 	

 It must be backed by a physical memory range (as allocated from the RAM
 allocator)

 	

 It must have assigned a core-local virtual memory range (as allocated
 from the core-region allocator)

 	

 The physical-memory range must have the same size as the virtual-memory range

 	

 The virtual memory range must be mapped to the physical memory range using
 the MMU

 Internally, the core-memory allocator maintains a so-called mapped-memory
 allocator that contains ranges of ready-to-use core-local memory. If a new
 allocation exceeds the available capacity, the core-memory allocator expands
 its capacity by allocating a new physical memory region from the RAM
 allocator, allocating a new core-virtual memory region from the core-region
 allocator, and installing a mapping from the virtual region to the physical
 region.

 All memory allocations mentioned above are performed at the granularity of
 physical pages, i.e., 4 KiB.

 The core-memory allocator is expanded on demand but never shrunk.
 This makes it unsuitable for allocating objects on behalf of core's clients
 because allocations could not be reverted when closing a session.
 It is solely used for dynamic memory allocations at startup (e.g., the
 memory needed for keeping the information about the boot modules),
 and for keeping meta data for the allocators themselves.

 Kernel-object creation

 Kernel objects are objects maintained within the kernel and used by the
 kernel.
 The exact notion of what a kernel object represents depends on the actual
 kernel as the various kernels differ with respect to the abstractions they
 provide.
 Typical kernel objects are threads and protection domains.
 Some kernels have kernel objects for memory mappings while others provide
 page tables as kernel objects.
 Whereas some kernels represent scheduling parameters as distinct kernel
 objects, others subsume scheduling parameters to threads.
 What all kernel objects have in common, though, is that they consume kernel
 memory.
 Most kernels of the L4 family preserve a fixed pool of memory for the
 allocation of kernel objects.

 If an arbitrary component were able to perform a kernel operation that triggers
 the creation of a kernel object, the memory consumption of the kernel would
 depend on the good behavior of all components. A misbehaving component may
 exhaust the kernel memory.

 To counter this problem, on Genode, only core triggers the creation of kernel
 objects and thereby guards the consumption of kernel memory. Note, however,
 that not all kernels are able to prevent the creation of kernel objects
 outside of core.

 Page-fault handling

 Each time a thread within the Genode system triggers a page fault, the kernel
 reflects the page fault along with the fault information as a message to the
 user-level page-fault handler residing in core.
 The fault information comprises the identity and instruction pointer of the
 faulted thread, the page-fault address, and the fault type (read, write,
 execute).
 The page-fault handler represents each thread as a so-called pager object,
 which encapsulates the subset of the thread's interface that is needed to
 handle page faults.
 For handling the page fault, the page-fault handler first looks up the pager
 object that belongs to the faulting thread's identity,
 analogously to how an RPC entrypoint looks up the RPC object for an incoming
 RPC request.
 Given the pager object, the fault is handled by calling the pager function
 with the fault information as argument. This function is implemented by
 the so-called Rm_client (repos/base/src/core/region_map_component.cc),
 which represents the association of the pager object
 with its virtual address space (region map). Given the context
 information about the region map of the thread's PD, the pager function
 looks up the region within the region map, on which the page fault occurred.
 The lookup results in one of the following three cases:

 	Region is populated with a dataspace

 	

 If a dataspace is attached at the fault address, the backing store of the
 dataspace is determined.
 Depending on the kernel, the backing store
 may be a physical page, a core-local page, or another reference to a physical
 memory page.
 The pager function then installs a memory mapping from the virtual page where
 the fault occurred to the corresponding part of the backing store.

 	Region is populated with a managed dataspace

 	

 If the fault occurred within a region where a managed dataspace is
 attached, the fault handling is forwarded to the region map that
 represents the managed dataspace.

 	Region is empty

 	

 If no dataspace could be found at the fault address, the fault cannot
 be resolved. In this case, core submits an region-map-fault signal to the
 region map where the fault occurred. This way, the region-map client has
 the chance to detect and possibly respond to the fault. Once the signal
 handler receives a fault signal, it is able to query the fault address
 from the region map.
 As a response to the fault, the region-map client may attach a dataspace at
 this address.
 This attach operation, in turn, will prompt core to wake up the thread
 (or multiple threads) that faulted within the attached region.
 Unless a dataspace is attached at the page-fault address, the faulting
 thread remains blocked.
 If no signal handler for region-map faults is registered for the region map,
 core prints a diagnostic message and blocks the faulting thread forever.

 To optimize the TLB footprint and the use of kernel memory, region maps
 do not merely operate at the granularity of memory pages but on
 address ranges whose size and alignment are arbitrary power-of-two values (at
 least as large as the size of the smallest physical page).
 The source and destinations of memory mappings may span many pages.
 This way, depending on the kernel and the architecture, multiple pages may be
 mapped at once, or large page-table mappings can be used.

 Asynchronous notification mechanism

 Section Asynchronous notifications introduces asynchronous notifications
 (signals) as one of the fundamental inter-component communication mechanisms.
 The description covers the semantics of the mechanism but the question of how
 the mechanism relates to core and the underlying kernel remains unanswered.
 This section complements Section Asynchronous notifications with those
 implementation details.

 Most kernels do not directly support the semantics of asynchronous
 notifications as presented in Section Asynchronous notifications. As a
 reminder, the mechanism has the following features:

 	

 The authority for triggering a signal is represented by a signal-context
 capability, which can be delegated via the common capability-delegation
 mechanism described in
 Section Capability delegation through capability invocation.

 	

 The submission of a signal is a fire-and-forget operation. The signal
 producer is never blocked.

 	

 On the reception of a signal, the signal handler can obtain the context
 to which the signal refers. This way, it is able to distinguish
 different sources of events.

 	

 A signal receiver can wait or poll for potentially many signal
 contexts.
 The number of signal contexts associated with a single signal receiver is not
 limited.

 The gap between this feature set and the mechanisms provided by the underlying
 kernel is bridged by core as part of the PD service. This service
 plays the role of a proxy between the producers and receivers of signals.
 Each component that interacts with signals has a session to this service.

 Within core, a signal context is represented as an RPC object. The RPC object
 maintains a counter of signals pending for this context. Signal
 contexts can be created and destroyed by the clients of the PD service
 using the alloc_context and free_context RPC functions. Upon the creation
 of a signal context, the PD client can specify an integer value called
 imprint with a client-local meaning. Later, on the reception of signals,
 the imprint value is delivered along with the signal to enable the
 client to tell the contexts of the incoming signals apart. As a result of
 the allocation of a new signal context, the client obtains a signal-context
 capability. This capability can be delegated to other components using
 the regular capability-delegation mechanism.

 Signal submission

 A component in possession of a signal-context capability is able to trigger
 signals using the submit function
 of its PD session. The submit function takes the signal context capability
 of the targeted context and a counter value as arguments. The capability as
 supplied to the submit function does not need to originate from the called
 session. It may have been created and delegated by another component.
 Note that even though a signal context is an RPC object, the submission of a
 signal is not realized as an invocation of this object. The signal-context
 capability is merely used as an RPC function argument. This design accounts
 for the fact that signal-context capabilities may originate from untrusted
 peers as is the case for servers that deliver asynchronous notifications
 to their clients.
 A client of such a server supplies a signal-context capability as argument
 to one of the server's RPC functions.
 An example is the input session interface (Section Input) that allows the
 client to get notified when new user input becomes available.
 A malicious client may specify a capability that was not created via core's
 PD service but that instead refers to an RPC object local to the client.
 If the submit function was an RPC function of the signal context, the
 server's call of the submit RPC function would eventually invoke the
 RPC object of the client. This would put the client in a position where
 it may block the server indefinitely and thereby make the server unavailable to
 all clients. In contrast to the untrusted signal-context capability, the
 PD session of a signal producer is by definition trusted. So it is safe
 to invoke the submit RPC function with the signal-context capability as
 argument. In the case where an invalid signal-context capability is delegated
 to the signal producer, core will fail to look up a signal context for the
 given capability and omit the signal.

 Signal reception

 For receiving signals, a component needs a way to obtain information about
 pending signals from core. This involves two steps: First, the component
 needs a way to block until signals are available. Second, if a signal is
 pending, the component needs a way to determine the signal context and the
 signal receiver associated with the signal and wake up the thread that
 blocks the Signal_receiver::block_for_signal API function.

 Both problems are solved by a dedicated thread that is spawned during
 component startup. This signal thread blocks at core's PD
 service for incoming signals. The blocking operation is not directly
 performed on the PD session but on a decoupled RPC object called
 signal source.
 In contrast to the PD session interface that is kernel agnostic, the
 underlying kernel mechanism used for blocking
 the signal thread at the signal source depends on the used base
 platform.

 The signal-source RPC object implements an RPC interface, on which the PD
 client issues a blocking wait_for_signal RPC function.
 This function blocks as long as no signal that refers to the session's signal
 contexts is pending. If the function returns, the return value contains the
 imprint that was assigned to the signal context at its creation and
 the number of signals pending for this context.
 On most base platforms, the implementation of the blocking RPC interface is
 realized by processing RPC requests and responses out of order to enable one
 entrypoint in core to serve all signal sources. Core uses a dedicated
 entrypoint for the signal-source handling to decouple the delivery of signals
 from potentially long-taking operations of the other core services.

 Given the imprint value returned by the signal source, the signal thread
 determines the signal context and signal receiver that belongs to the pending
 signal (using a data structure called Signal_context_registry) and locally
 submits the signal to the signal-receiver object. This, in turn, unblocks the
 Signal_receiver::block_for_signal function at the API level.

 Parent-child interaction in detail

 On a conceptual level, the session-creation procedure as described in
 Section Services and sessions appears as a synchronous interaction
 between the parent and its child components. The interaction serves three
 purposes. First, it is used to communicate information between different
 protection domains, in this case the parent, the client, and the server.
 Second, it implicitly dictates the flow of control between the involved
 parties because the caller blocks until the callee replies.
 Third, the interplay delegates authority (in particular authority to
 access the server's session object) between protection domains. The latter is
 realized with the kernel's ability to carry capabilities as IPC message
 payload.

 	

 [image: img/async_session_seq]

	
 Parent-child interplay during the creation of a new session. The dotted lines are asynchronous notifications, which have fire-and-forget semantics. A component that triggers a signal does not block.

 On the surface, the interaction looks like a sequence of synchronous RPC
 calls. However, under the hood, the interplay between the parent and its
 children is based on a combination of asynchronous notifications from
 the parent to the children and synchronous RPC from the children to the
 parent. The protocol is designed such that the parent's liveliness remains
 independent from the behavior of its children, which must generally be
 regarded as untrusted from the parent's perspective. The sequence of creating
 a session is depicted in Figure img/async_session_seq.
 The following points are worth noting:

 	

 Sessions are identified via IDs, which are plain numbers as opposed to
 capabilities. The IDs as seen by the client and server belong to different
 ID name spaces.
 IDs of sessions requested by the client are allocated by the client. IDs
 of sessions requested at the server are allocated by the parent.

 	

 The parent does not issue RPC calls to any of its children.

 	

 Each activation of the parent merely applies a state change of the session's
 meta data structures maintained at the parent, which capture the entire
 state of session requests.

 	

 The information about pending session requests is communicated from the
 parent to the server via a ROM session. At startup, the server requests
 a ROM session for the ROM module "session_requests" from its parent. The
 parent implements this ROM session locally. Since ROM sessions support
 versions, the parent can post version updates of the "session_requests"
 ROM with the regular mechanisms already present in Genode.

 	

 The parties involved can potentially run in parallel.

 Dynamic linker

 The dynamic linker is a mechanism for loading ELF binaries that are
 dynamically-linked against shared libraries.

 Building dynamically-linked programs

 The build system automatically decides whether a program is linked statically
 or dynamically depending on the use of shared libraries. If the target
 is linked against at least one shared library, the resulting ELF image
 is a dynamically-linked program. Almost all Genode components are linked
 against the Genode application binary interface (ABI), which is a shared
 library. Therefore, components are dynamically-linked programs unless a
 kernel-specific base library is explicitly used.

 The entrypoint of a dynamically-linked program is the Component::construct
 function.

 Startup of dynamically-linked programs

 When creating a new component,
 the parent first detects whether the to-be-loaded ELF binary represents
 a statically-linked program or a dynamically-linked program by inspecting
 the ELF binary's program-header information (see
 repos/base/src/lib/base/elf_binary.cc).
 If the program is statically linked, the parent follows the procedure as
 described in Section Component creation. If the program is dynamically
 linked, the parent remembers the dataspace of the program's ELF image but
 starts the ELF image of the dynamic linker instead.

 The dynamic linker is a regular Genode component that follows the startup
 procedure described in Section Startup code. However, because of its
 hybrid nature, it needs to take special precautions before using any
 data that contains relocations. Because the dynamic linker is a shared
 library, it contains data relocations. Even though the linker's code is
 position independent and can principally be loaded to an arbitrary address,
 global data objects may contain pointers to other global data objects or
 code. For example, vtable entries contain pointers to code. Those pointers
 must be relocated depending on the load address of the binary. This step is
 performed by the init_rtld hook function, which was already mentioned in
 Section Startup code. Global data objects must not be used before calling
 this function. For this reason, init_rtld is called at the earliest possible
 time directly from the assembly startup code.
 Apart from the call of this hook function, the startup of the dynamic linker
 is the same as for statically-linked programs.

 The main function of the dynamic linker obtains the binary of the actual
 dynamically-linked program by requesting a ROM session for the module
 "binary". The parent responds to this request by handing out a
 locally-provided ROM session that contains the dataspace of the actual
 program. Once the linker has obtained the dataspace containing the
 dynamically-linked program, it loads the program and all required shared
 libraries. The dynamic linker requests each shared library as a ROM
 session from its parent.

 After completing the loading of all ELF objects, the dynamic linker determines
 the entry point of the loaded binary by looking up the Component::construct
 symbol and calls it as a function. Note that this particular symbol is
 ambiguous as both the dynamic linker and the loaded program have such a
 function. Hence, the lookup is performed explicitly on the loaded program.

 Address-space management

 To load the binary and the associated shared libraries, the linker does not
 directly attach dataspaces to its address space. Instead, it manages a dedicated
 part of the component's virtual address space called linker area manually.
 The linker area is a region map that is created as part of a PD session.
 The dynamic linker attaches the linker area as a managed dataspace to its
 address space. This way, the linker can precisely
 control the layout within the virtual-address range covered by the managed
 dataspace. This control is needed because the loading of an ELF object does
 not correspond to an atomic attachment of a single dataspace but it involves
 consecutive attach operations for multiple dataspaces, one for each ELF
 segment. When attaching one segment, the linker must make sure that there is
 enough space beyond the segment to host the next segment. The use of a managed
 dataspace allows the linker to manually allocate large-enough portions of
 virtual memory and populate them in multiple steps.

 Execution on bare hardware (base-hw)

 The code specific to the base-hw platform is located within the
 repos/base-hw/ directory. In the following description, unless explicitly
 stated otherwise, all paths are relative to this directory.

 In contrast to classical L4 microkernels where Genode's core process runs as
 user-level roottask on top of the kernel, base-hw executes Genode's core
 directly on the hardware with no distinct kernel underneath. Core and the
 kernel are melted into one hybrid component. Although all threads of core are
 running in privileged processor mode, they call a kernel library to synchronize
 hardware interaction. However, most work is done outside of that library. This
 design has several benefits. First, the kernel part becomes much simpler. For
 example, there are no allocators needed within the kernel. Second, base-hw side-steps
 long-standing difficult kernel-level problems, in particular the management of kernel
 resources. For the allocation of kernel objects, the hybrid core/kernel can
 employ Genode's user-level resource trading concepts as described in Section
 Resource trading. Finally and most
 importantly, merging the kernel with roottask removes a lot of
 redundancies between both programs. Traditionally, both kernel and roottask
 perform the book keeping of physical-resource allocations and the existence
 of kernel objects such as address spaces and threads. In base-hw, those data
 structures exist only once. The complexity of the combined kernel/core is
 significantly lower than the sum of the complexities of a traditional
 self-sufficient kernel and a distinct roottask on top. This way, base-hw helps
 to make Genode's TCB less complex.

 The following subsections detail the problems that base-hw had to address
 to become a self-sufficient base platform for Genode.

 Bootstrapping of base-hw

 Startup of the base-hw kernel

 Core on base-hw uses Genode's regular linker script. Like any
 regular Genode component, its execution starts at the _start symbol.
 But unlike a regular component, core is started by the bootstrap component as
 a kernel running in privileged mode. Instead of directly following the startup
 procedure described in Section Startup code, base-hw uses custom startup code
 that initializes the kernel part of core first. For example, the startup code
 for the ARM architecture is located at src/core/spec/arm/crt0.s.
 It calls the kernel initialization code in src/core/kernel/init.cc.
 Core's regular C++ startup code (the _main function) is executed by the first
 thread created by the kernel (see the thread setup in the
 Core_thread::Core_thread() constructor).

 Kernel entry and exit

 The execution model of the kernel can be roughly characterized as a
 single-stack kernel. In contrast to traditional L4 kernels that maintain one
 kernel thread per user thread, the base-hw kernel is a mere state machine
 that never blocks in the kernel. State transitions are triggered by
 core or user-level threads that enter the kernel via a system call, by device
 interrupts, or by a CPU exception. Once entered, the kernel applies the state
 change depending on the event that caused the kernel entry, and leaves the
 kernel again. The transition between normal threads and kernel execution
 depends on the concrete architecture. For ARM, the corresponding code is located
 at src/core/spec/arm/exception_vector.s.

 Interrupt handling and preemptive multi-threading

 In order to respond to interrupts, base-hw has to contain a driver for
 the interrupt controller. The interrupt-controller driver for
 a particular hardware platform can be found at src/core/spec/<spec>/pic.h
 and the corresponding src/core/spec/<spec>/pic.cc. Whereby <spec>
 refers to a particular platform (e.g., imx53) or an IP block that is
 is used across different platforms (e.g., arm_gic for ARM's generic
 interrupt controller).
 Each of the drivers implement the same interface. When building core,
 the build system uses the build-spec mechanism explained in
 Section Build system to incorporate the single driver needed for the
 targeted SoC.

 To support preemptive multi-threading, base-hw requires a hardware timer.
 The timer is programmed with the time slice length of the currently
 executed thread. Once the programmed timeout elapses, the timer device
 generates an interrupt that is handled by the kernel. Similarly to
 interrupt controllers, there exist a variety of different timer devices
 for different CPUs. Therefore, base-hw contains different timer drivers.
 The timer drivers are located at src/core/spec/<spec>/timer.h
 where <spec> refers to the timer variant.

 The in-kernel handler of the timer interrupt invokes the thread scheduler
 (src/core/kernel/cpu_scheduler.h).
 The scheduler maintains a list of so-called scheduling contexts where each
 context refers to a thread. Each time the kernel is entered, the scheduler
 is updated with the passed duration. When updated, it takes a scheduling
 decision by making the next to-be-executed thread the head of the list.
 At kernel exit, the control is passed to the user-level thread that
 corresponds to the head of the scheduler list.

 Split kernel interface

 The system-call interface of the base-hw kernel is split into two parts.
 One part is usable by all components and solely contains system calls for
 inter-component communication and thread synchronization. The definition
 of this interface is located at include/kernel/interface.h. The second
 part is exposed only to core. It supplements the public interface with
 operations for the creation, the management, and the destruction of kernel
 objects. The definition of the core-private interface is located at
 src/core/kernel/core_interface.h.

 The distinction between both parts of the kernel interface is enforced
 by the function Thread::_call in src/core/kernel/thread.cc.

 Public part of the kernel interface

 Threads do not run independently but interact with each other via synchronous
 inter-component communication as detailed in Section
 Inter-component communication. Within base-hw, this mechanism is referred
 to as IPC (for inter-process communication).
 To allow threads to perform calls to other threads or to receive RPC requests,
 the kernel interface is equipped with system calls for performing IPC
 (send_request_msg, await_request_msg, send_reply_msg).
 To keep the kernel as simple as possible, IPC is performed using so-called
 user-level thread-control blocks (UTCB).
 Each thread has a corresponding memory page that is always
 mapped in the kernel. This UTCB page is used to carry IPC payload. The largely
 simplified procedure of transferring a message is as follows. (In reality, the
 state space is more complex because the receiver may not be in a blocking state
 when the sender issues the message)

 	

 The sender marshals its payload into its UTCB and invokes the kernel,

 	

 The kernel transfers the payload from the sender's UTCB to the receiver's
 UTCB and schedules the receiver,

 	

 The receiver retrieves the incoming message from its UTCB.

 Because all UTCBs are always mapped in the kernel, no page faults can occur
 during the second step. This way, the flow of execution within the kernel
 becomes predictable and no kernel exception handling code is needed.

 In addition to IPC, threads interact via the synchronization primitives
 provided by the Genode API. To implement these portions of the API, the kernel
 provides system calls for managing the execution control of threads
 (stop_thread, restart_thread, yield_thread).

 To support asynchronous notifications as described in Section
 Asynchronous notifications, the kernel provides system calls for the
 submission and reception of signals (await_signal, cancel_next_await_signal,
 submit_signal, and ack_signal) as well as the life-time management
 of signal contexts (kill_signal_context). In contrast to other
 base platforms, Genode's signal API is directly supported by the kernel
 so that the propagation of signals does not require any interaction with
 core's PD service.
 However, the creation of signal contexts is arbitrated by the PD service.
 This way, the kernel objects needed for the signalling mechanism are
 accounted to the corresponding clients of the PD service.

 The kernel provides an interface to make the kernel's scheduling timer
 available as time source to the user land. Using this interface,
 components can bind signal contexts to timeouts (timeout) and
 follow the progress of time (timeout_age_us and timeout_max_us).

 Core-private part of the kernel interface

 The core-private part of the kernel interface allows core to perform
 privileged operations. Note that even though the kernel and core provide
 different interfaces, both are executed in privileged CPU mode, share
 the same address space and ultimately trust
 each other. The kernel is regarded a mere support library of core that
 executes those functions that shall be synchronized between different
 CPU cores and core's threads. In particular, the kernel does not perform
 any allocation. Instead, the allocation of kernel objects is performed as
 an interplay of core and the kernel.

 	

 Core allocates physical memory from its physical-memory allocator.
 Most kernel-object allocations are performed in the context of one
 of core's services. Hence, those allocations can be properly accounted
 to a session quota (Section Resource trading). This way, kernel objects
 allocated on behalf of core's clients are "paid for" by those clients.

 	

 Core allocates virtual memory to make the allocated physical memory visible
 within core and the kernel.

 	

 Core invokes the kernel to construct the kernel object at the location
 specified by core. This kernel invocation is actually a system call that
 enters the kernel via the kernel-entry path.

 	

 The kernel initializes the kernel object at the virtual address specified
 by core and returns to core via the kernel-exit path.

 The core-private kernel interface consists of the following operations:

 	

 The creation and destruction of protection domains
 (new_pd, update_pd, delete_pd), invoked by the PD service

 	

 The creation, manipulation, and destruction of threads
 (new_thread, start_thread, resume_thread, thread_quota,
 pause_thread, delete_thread, thread_pager, and _cancel_thread_blocking),
 used by the CPU service
 and the core-specific back end of the Genode::Thread API

 	

 The creation and destruction of signal receivers and signal contexts
 (new_signal_receiver, delete_signal_receiver, new_signal_context, and
 delete_signal_context), invoked by the PD service

 	

 The creation and destruction of kernel-protected object identities
 (new_obj, delete_obj)

 	

 The creation, manipulation, and destruction of interrupt kernel objects
 (new_irq, ack_irq, and delete_irq)

 Scheduler of the base-hw kernel

 CPU scheduling in traditional L4 microkernels is based on static priorities.
 The scheduler always picks the runnable thread with highest priority for
 execution.
 If multiple threads share one priority, the kernel schedules those threads
 in a round-robin fashion.
 Whereas being pretty fast and easy to implement, this scheme has disadvantages:
 First, there is no way to prevent
 high-prioritized threads from starving lower-prioritized ones. Second, CPU time
 cannot be granted to threads and passed between them by the means of quota.
 To cope with these problems without much loss of performance, base-hw employs
 a custom scheduler that deviates from the traditional approach.

 The base-hw scheduler introduces the distinction between high-throughput-oriented
 scheduling contexts - called fills - and low-latency-oriented
 scheduling contexts - called claims. Examples for typical fills would be
 the processing of a compiler job or the rendering computations of a sophisticated
 graphics program. They shall obtain as much CPU time as the system can spare
 but there is no demand for a high responsiveness. In contrast, an example
 for the claim category would be a typical GUI-software stack covering the
 control flow from user-input drivers through a chain of GUI components to the
 drivers of the graphical output. Another example is a user-level device driver
 that must quickly respond to sporadic interrupts but is otherwise untrusted.
 The low latency of such components is a key factor for usability and
 quality of service. Besides introducing the distinction between claim and fill
 scheduling contexts, base-hw introduces the notion of a so-called
 super period, which is a multiple of typical scheduling time slices, e.g.,
 one second. The entire super period
 corresponds to 100% of the CPU time of one CPU. Portions of it can be assigned
 to scheduling contexts. A CPU quota thereby corresponds to a percentage of the
 super period.

 At the beginning of a super period, each claim has its full amount of assigned
 CPU quota. The priority defines the absolute scheduling order within the super
 period among those claims that are active and have quota left. As long as
 there exist such claims, the scheduler stays in the claim mode and the quota
 of the scheduled claims decreases. At the end of a super period, the quota of
 all claims is replenished to the initial value. Every time the scheduler can't
 find an active claim with CPU-quota left, it switches to the fill mode. Fills
 are scheduled in a simple round-robin fashion with identical time slices. The
 proceeding of the super period doesn't affect the scheduling order and
 time-slices of this mode. The concept of quota and priority that is
 implemented through the claim mode aligns nicely with Genode's way of
 hierarchical resource management: Through CPU sessions, each process becomes
 able to assign portions of its CPU time and subranges of its priority band to
 its children without knowing the global meaning of CPU time or priority.

 Sparsely populated core address space

 Even though core has the authority over all physical memory, it has no
 immediate access to the physical pages. Whenever core requires access to a
 physical memory page, it first has to explicitly map the physical page into
 its own virtual memory space. This way, the virtual address space of core
 stays clean from any data of other components. Even in the presence of a bug
 in core (e.g., a dangling pointer), information cannot accidentally leak
 between different protection domains because the virtual memory of the other
 components is not necessarily visible to core.

 Multi-processor support of base-hw

 On uniprocessor systems, the base-hw kernel is single-threaded. Its
 execution model corresponds to a mere state machine.
 On SMP systems, it maintains one kernel thread and one scheduler per CPU core.
 Access to kernel
 objects gets fully serialized by one global spin lock that is acquired
 when entering the kernel and released when leaving the kernel. This keeps the
 use of multiple cores transparent to the kernel model, which greatly
 simplifies the code compared to traditional L4 microkernels. Given
 that the kernel is a simple state machine providing lightweight non-blocking
 operations, there is little contention for the global kernel
 lock. Even though this claim may not hold up when scaling to a large number of
 cores, current platforms can be accommodated well.

 Cross-CPU inter-component communication

 Regarding synchronous and asynchronous inter-processor communication - thanks
 to the global kernel lock - there is no semantic difference to the uniprocessor
 case. The only difference is that on a multiprocessor system, one processor may
 change the schedule of another processor by unblocking one of its threads
 (e.g., when an RPC call is received by a server that resides on a different CPU
 as the client).
 This condition may rescind the current scheduling choice of the other processor.
 To avoid lags in this case, the kernel lets the unaware target processor trap
 into an inter-processor interrupt (IPI).
 The targeted processor can react to the IPI by taking the decision to
 schedule the receiving thread.
 As the IPI sender does not have to wait for an answer, the sending and
 receiving CPUs remain largely decoupled.
 There is no need for a complex IPI protocol between sender and receiver.

 TLB shootdown

 With respect to the synchronization of core-local hardware, there are two
 different situations to deal with. Some hardware components like most ARM
 caches and branch predictors implement their own coherence protocol and thus
 need adaption in terms of configuration only. Others, like the TLBs lack this
 feature. When for instance a page table entry gets invalid, the TLB invalidation
 of the affected entries must be performed locally by each core. To signal the
 necessity of TLB maintenance work, an IPI is sent to all other cores. Once all
 cores have completed the cleaning, the thread that invoked the TLB invalidation
 resumes its execution.

 Asynchronous notifications on base-hw

 The base-hw platform improves the mechanism described in Section
 Asynchronous notification mechanism by introducing signal receivers and
 signal contexts as first-class kernel objects. Core's
 PD service is merely used to arbitrate the creation and destruction of
 those kernel objects but it does not play the role of a signal-delivery proxy.
 Instead, signals are communicated directly by using the public kernel
 operations await_signal, cancel_next_await_signal, submit_signal, and
 ack_signal.

 Execution on the NOVA microhypervisor (base-nova)

 NOVA is a so-called microhypervisor, denoting the combination of microkernel
 and a virtualization platform (hypervisor). It is a high-performance
 microkernel for the x86 architecture. In contrast to other microkernels,
 it has been designed for hardware-based virtualization via user-level
 virtual-machine monitors. In line with Genode's architecture, NOVA's kernel
 interface is based on capability-based security. Hence, the kernel fully
 supports the model of a Genode kernel as described in Section
 Capability-based security.

 	NOVA website

 	

 http://hypervisor.org

 	NOVA kernel-interface specification

 	

 https://github.com/udosteinberg/NOVA/raw/master/doc/specification.pdf

 Integration of NOVA with Genode

 The NOVA kernel is available via Genode's ports mechanism detailed in
 Section Integration of 3rd-party software. The port description is located
 at repos/base-nova/ports/nova.port.

 Building the NOVA kernel

 Even though NOVA is a third-party kernel with a custom build system,
 the kernel is built directly by the Genode build system. NOVA's build
 system remains unused.

 From within a Genode build directory configured for one of the nova_x86_32
 or nova_x86_64 platforms, the kernel can be built via

 make kernel

 The build description for the kernel is located at
 repos/base-nova/src/kernel/target.mk.

 System-call bindings

 NOVA is not accompanied with bindings to its kernel interface. There
 only is a description of the kernel interface in the form of the kernel
 specification available. For this reason, Genode maintains the kernel
 bindings for NOVA within the Genode source tree. The bindings are located
 at repos/base-nova/include/ in the subdirectories nova/, spec/32bit/nova/,
 and spec/64bit/nova/.

 Bootstrapping of a NOVA-based system

 After finishing its initialization, the kernel starts the second boot module,
 the first being the kernel itself, as root task. The root task is Genode's core.
 The virtual address space of core contains the text and data segments of core, the
 UTCB of the initial execution context (EC), and the hypervisor info page (HIP).
 Details about the HIP are provided in Section 6 of the NOVA specification.

 BSS section of core

 The kernel's ELF loader does not support the concept of a BSS segment. It
 simply maps the physical pages of core's text and data segments into
 the virtual memory of core but does not allocate any additional physical
 pages for backing the BSS. For this reason, the NOVA version of core
 does not use the genode.ld linker script as described in Section
 Linker scripts but the linker script located at
 repos/base-nova/src/core/core.ld. This version hosts the BSS section
 within the data segment. Thereby, the BSS is physically present in the core
 binary in the form of zero-initialized data.

 Initial information provided by NOVA to core

 The kernel passes a pointer to the HIP to core as the initial value of the
 ESP register. Genode's startup code saves this value in the global variable
 _initial_sp (Section Startup code).

 Log output on modern PC hardware

 Because transmitting information over legacy comports does not require
 complex device drivers, serial output over comports is still the predominant
 way to output low-level system logs like kernel messages or the output of
 core's LOG service.

 Unfortunately, most modern PCs lack dedicated comports. This leaves two
 options to obtain low-level system logs.

 	

 The use of vendor-specific platform-management features such as Intel
 VPro / Intel Advanced Management Technology (AMT) or Intel Platform
 Management Interface (IPMI). These platform features are able to emulate a
 legacy comport and provide the serial output over the network.
 Unfortunately, those solutions are not uniform across different vendors,
 difficult to use, and tend to be unreliable.

 	

 The use of a PCI card or an Express Card that provides a physical comport.
 When using such a device, the added comport appears as PCI I/O resource.
 Because the device interface is compatible to the legacy comports,
 no special drivers are needed.

 The latter option allows the retrieval of low-level system logs on hardware
 that lacks special management features.
 In contrast to the legacy comports, however, it has the minor disadvantage
 that the location of the device's I/O resources is not known beforehand.
 The I/O port range of the comport depends on the device-enumeration
 procedure of the BIOS. To enable the kernel to output information
 over this comport, the kernel must be configured with the I/O port range
 as assigned by the BIOS on the specific machine. One kernel binary
 cannot simply be used across different machines.

 The Bender chain boot loader

 To alleviate the need to adapt the kernel configuration to the used comport
 hardware, the bender chain boot loader can be used.

 	Bender is part of the MORBO tools

 	

 https://github.com/TUD-OS/morbo

 Instead of starting the NOVA hypervisor directly, the multi-boot-compliant
 boot loader (such as GRUB) starts bender as the kernel. All remaining
 boot modules including the real kernel have already been loaded into memory
 by the original boot loader. Bender scans the PCI bus for a comport device.
 If such a device is found (e.g., an Express Card), it writes the information
 about the device's I/O port range to a known offset within the BIOS data
 area (BDA).

 After the comport-device probing is finished, bender passes control to the
 next boot module, which is the real kernel. The comport device driver of
 the kernel does not use a hard-coded I/O port range for the comport but
 looks up the comport location in the BDA.
 The use of bender is optional. When not used, the BDA always contains the I/O
 port range of the legacy comport 1.

 The Genode source tree contains a pre-compiled binary of bender at
 tool/boot/bender. This binary is automatically incorporated into boot images
 for the NOVA base platform when the run tool (Section Run tool) is used.

 Relation of NOVA's kernel objects to Genode's core services

 For the terminology of NOVA's kernel objects, refer to the NOVA specification
 mentioned in the introduction of
 Section Execution on the NOVA microhypervisor (base-nova).
 A brief glossary for the terminology used in the remainder of this section is
 given in table 1.

 	 NOVA term
 	

 	 PD EC SC HIP IDC portal
 	 Protection domain Execution context (thread) Scheduling context Hypervisor information page Inter-domain call (RPC call) communication endpoint

 Table 1: Glossary of NOVA's terminology

 NOVA capabilities are not Genode capabilities

 Both NOVA and Genode use the term "capability". However, the term does not have
 the same meaning in both contexts. A Genode capability refers to an RPC
 object or a signal context. In the context of NOVA, a capability refers to
 a NOVA kernel object. To avoid confusing both meanings of the term,
 Genode refers to NOVA's term as "capability selector", or simply
 "selector". A Genode signal context capability corresponds to a NOVA semaphore,
 all other Genode capabilities correspond to NOVA portals.

 PD service

 A PD session corresponds to a NOVA PD.

 A Genode capability being a NOVA portal has a
 defined IP and an associated local EC (the Genode entrypoint). The invocation
 of a such a Genode capability is an IDC call to a portal. A Genode capability is
 delegated by passing its corresponding portal or semaphore selector as IDC argument.

 Page faults are handled as explained in Section
 Page-fault handling on NOVA. Each memory mapping installed in a component
 implicitly triggers the allocation of a node in the kernel's mapping
 database.

 CPU service

 NOVA distinguishes between so-called global ECs and local ECs. A global EC can
 be equipped with CPU time by associating it with an SC. It can perform
 IDC calls but it cannot receive IDC calls. In contrast to a global EC,
 a local EC is able to receive IDC calls but it has no CPU time. A local
 EC is not executed before it is called by another EC.

 A regular Genode thread is a global EC. A Genode entrypoint is a local EC.
 Core distinguishes both cases based on the instruction-pointer (IP) argument
 of the CPU session's start function. For a local EC, the IP is set to zero.

 IO_MEM services

 Core's RAM and IO_MEM allocators are initialized based on the information found
 in NOVA's HIP.

 ROM service

 Core's ROM service provides all boot modules as ROM modules. Additionally,
 a copy of NOVA's HIP is provided as a ROM module named "hypervisor_info_page".

 IRQ service

 NOVA represents each interrupt as a semaphore created by the kernel. By
 registration of a Genode signal context capability via the sigh method of the
 Irq_session interface, the semaphore of the signal context capability is
 bound to the interrupt semaphore. Genode signals and NOVA semaphores are
 handled as described in Asynchronous notifications on NOVA.

 Upon the initial IRQ session's ack_irq call, a NOVA semaphore-down operation
 is issued within core on the interrupt semaphore, which implicitly unmasks the
 interrupt at the CPU. When the interrupt occurs, the kernel masks the interrupt
 at the CPU and performs the semaphore-up operation on the IRQ's semaphore.
 Thereby, the chained semaphore, which is the beforehand registered Genode
 signal context, is triggered and the interrupt is delivered as
 Genode signal. The interrupt gets acknowledged and unmasked by calling the
 IRQ session's ack_irq method.

 Page-fault handling on NOVA

 On NOVA, each EC has a pre-defined range of portal selectors.
 For each type of exception, the range has a dedicated portal that is entered in
 the event of an exception.
 The page-fault portal of a Genode thread is defined at the creation
 time of the thread and points to a pager EC per CPU within core. Hence,
 for each CPU, a pager EC in core pages all Genode threads running on the same
 CPU.

 The operation of pager ECs

 When an EC triggers a page fault, the faulting EC implicitly performs an
 IDC call to its pager. The IDC message contains the fault information.
 For resolving the page fault, core follows the procedure
 described in Page-fault handling. If the lookup for a dataspace within
 the faulter's region map succeeds, core establishes
 a memory mapping into the EC's PD by invoking the asynchronous map operation
 of the kernel and replies to the IDC message. In the case where the region lookup
 within the thread's corresponding region map fails, the faulted thread
 is retained in a blocked state via a kernel semaphore.
 In the event that the fault is later resolved by a region-map client
 as described in the paragraph "Region is empty" of Section
 Page-fault handling, the semaphore gets released, thus resuming the execution of
 the faulted thread. The faulter will immediately trigger another fault at the
 same address. This time, however, the region lookup succeeds.

 Mapping database

 NOVA tracks memory mappings in a data structure called mapping database
 and has the notion of the delegation of memory mappings (rather than the
 delegation of memory access). Memory access can be delegated only if the
 originator of the delegation has a mapping. Core is the only exception because
 it can establish mappings originating from the physical memory space.
 Because mappings can be delegated transitively between PDs, the mapping
 database is a tree where each node denotes the delegation of a mapping.
 The tree is maintained in order to enable the kernel to rescind the authority.
 When a mapping is revoked, the kernel implicitly cancels all transitive
 mappings that originated from the revoked node.

 Asynchronous notifications on NOVA

 To support asynchronous notifications as described in Section
 Asynchronous notifications, we extended the NOVA kernel semaphores to
 support signalling via chained NOVA semaphores. This extension enables the
 creation of kernel semaphores with a per-semaphore value, which can be bound to
 another kernel semaphore. Each bound semaphore corresponds to a Genode signal
 context. The per-semaphore value is used to distinguish different sources of
 signals.

 On this base platform, the blocking of the signal thread at the signal
 source is realized by using a kernel semaphore shared by the PD session
 and the PD client. All chained semaphores (Signal contexts) are bound to this
 semaphore. When first issuing a wait-for-signal operation
 at the signal source, the client requests a capability selector for the shared
 semaphore (repos/base-nova/include/signal_session/source_client.h). It then
 performs a down operation on this semaphore to block.

 If a signal sender issues a submit operation on a Genode signal
 capability, then a regular NOVA kernel semaphore-up syscall is used. If the
 kernel detects that the used semaphore is chained to another semaphore, the up
 operation is delegated to the one received during the initial wait-for-signal
 operation of the signal receiving thread.

 In contrast to other base platforms, Genode's signal API is supported by the
 kernel so that the propagation of signals does not require any interaction with
 core's PD service. However, the creation of signal contexts is arbitrated by
 the PD service.

 IOMMU support

 As discussed in Section Direct memory access (DMA) transactions, misbehaving
 device drivers may exploit DMA transactions to circumvent their component
 boundaries. When executing Genode on the NOVA microhypervisor, however,
 bus-master DMA is subjected to the IOMMU.

 The NOVA kernel
 applies a subset of the (MMU) address space of a protection domain
 to the (IOMMU) address space of a device. So the device's
 address space can be managed in the same way as one normally manages the address
 space of a PD. The only missing link is the assignment of device address
 spaces to PDs. This link is provided by the dedicated system
 call assign_pci that takes a PD capability selector and a device identifier as
 arguments. The PD capability selector represents the authorization over the
 protection domain, which is going to be targeted by DMA transactions.
 The device identifier is a virtual address where the extended PCI
 configuration space of the device is mapped in the specified PD.
 Only if a user-level device driver has access to the extended PCI
 configuration space of the device, is it able to get the assignment in place.

 To make NOVA's IOMMU support available to Genode,
 the ACPI driver has the ability to lookup the extended PCI configuration
 space region for all devices and reports it via a Genode ROM. The platform
 driver on x86 evaluates the reported ROM and uses the information to obtain
 transparently for platform clients (device drivers) the extended PCI
 configuration space per device. The platform driver uses a NOVA-specific
 extension (assign_pci) to the PD session interface to associate a PCI device
 with a protection domain.

 Even though these mechanisms combined should in theory
 suffice to let drivers operate with the IOMMU enabled, in practice, the
 situation is a bit more complicated. Because NOVA uses the same
 virtual-to-physical mappings for the device as it uses for the process, the DMA
 addresses the driver needs to supply to the device must be virtual addresses
 rather than physical addresses. Consequently, to be able to make a device
 driver usable on systems without IOMMU as well as on systems with IOMMU, the
 driver needs to become IOMMU-aware and distinguish both cases. This is an
 unfortunate consequence of the otherwise elegant mechanism provided by NOVA. To
 relieve the device drivers from worrying about both cases, Genode decouples
 the virtual address space of the device from the virtual address space of the
 driver. The former address space is represented by a Genode component called
 device PD. Its sole purpose
 is to hold mappings of DMA buffers that are accessible by the associated
 device. By using one-to-one physical-to-virtual mappings for those buffers
 within the device PD, each device PD contains a subset of the physical address
 space. The platform driver performs the assignment of device PDs to PCI
 devices. If a device driver intends to use DMA, it allocates a new DMA buffer
 for a specific PCI device at the platform driver.
 The platform driver responds to such a request by allocating a RAM dataspace at core,
 attaching it to the device PD using the dataspace's physical address as virtual
 address, and by handing out the dataspace capability to the client. If the driver
 requests the physical address of the dataspace, the address returned will be a
 valid virtual address in the associated device PD.
 This design implies that a device driver must allocate DMA buffers at the
 platform driver (specifying the PCI device the buffer is intended for) instead
 of using core's PD service to allocate buffers anonymously.

 Genode-specific modifications of the NOVA kernel

 NOVA is not ready to be used as a Genode base platform as is. This section
 compiles the modifications that were needed to meet the functional requirements of
 the framework. All modifications are maintained at the following
 repository:

 	Genode's version of NOVA

 	

 https://github.com/alex-ab/NOVA.git

 The repository contains a separate branch for each version of NOVA that has
 been used by Genode. When preparing the NOVA port using the port description
 at repos/base-nova/ports/nova.port, the NOVA branch that matches the used
 Genode version is checked out automatically. The port description refers to
 a specific commit ID. The commit history of each branch within the NOVA
 repository corresponds to the history of the original NOVA kernel
 followed by a series of Genode-specific commits. Each time NOVA is updated,
 a new branch is created and all Genode-specific commits are rebased on top of
 the history of the new NOVA version.
 This way, the differences between the original NOVA kernel and the Genode
 version remain clearly documented. The Genode-specific modifications solve the
 following problems:

 	Destruction of kernel objects

 	

 NOVA does not support the destruction of kernel objects. I.e., PDs and
 ECs can be created but not destroyed. With Genode being a dynamic system,
 kernel-object destruction is a mandatory feature.

 	Inter-processor IDC

 	

 On NOVA, only local ECs can receive IDC calls. Furthermore each local EC
 is bound to a particular CPU (hence the name "local EC"). Consequently,
 synchronous inter-component communication via IDC calls is possible only
 between ECs that both reside on the same CPU but can never cross CPU
 boundaries. Unfortunately, IDC is the only mechanism for the delegation
 of capabilities. Consequently, authority cannot be delegated between
 subsystems that reside on different CPUs. For Genode, this scheme is
 too rigid.

 Therefore, the Genode version of NOVA introduces inter-CPU IDC calls.
 When calling
 an EC on another CPU, the kernel creates a temporary EC and SC on the
 target CPU as a representative of the caller. The calling EC is blocked.
 The temporary EC uses the same UTCB as the calling EC. Thereby, the
 original IDC message is effectively transferred from one CPU to the other.
 The temporary EC then performs a local IDC to the destination EC using
 NOVA's existing IDC mechanism. Once the temporary EC receives the reply
 (with the reply message contained in the caller's UTCB), the kernel
 destroys the temporary EC and SC and unblocks the caller EC.

 	Support for priority-inheriting spinlocks

 	

 Genode's lock mechanism relies on a yielding spinlock for protecting the
 lock meta data. On most base platforms, there exists the invariant that
 all threads of one component share the same CPU priority. So priority
 inversion within a component cannot occur. NOVA breaks this invariant
 because the scheduling parameters (SC) are passed along IDC call chains.
 Consequently, when a client calls a server, the SCs of both client
 and server reside within the server. These SCs may have different
 priorities. The use of a naive spinlock for synchronization will produce
 priority inversion problems. The kernel has been extended with the
 mechanisms needed to support the implementation of
 priority-inheriting spinlocks in userland.

 	Combination of capability delegation and translation

 	

 As described in
 Section Capability delegation through capability invocation,
 there are two cases when a capability is specified as an RPC argument.
 The callee may already have a capability referring to the specified
 object identity. In this case, the callee expects to receive the corresponding
 local name of the object identity. In the other case, when the callee
 does not yet have a capability for the object identity, it obtains a new
 local name that refers to the delegated capability.

 NOVA does not support this mechanism per se.
 When specifying a capability selector as map item for an IDC call,
 the caller has to specify whether a new mapping should be created or
 the translation of the local names should be performed by the kernel.
 However, in the general case, this question is not decidable by the caller.
 Hence, NOVA had to be changed to take the decision depending on the
 existence of a valid translation for the specified capability selector.

 	Support for deferred page-fault resolution

 	

 With the original version of NOVA, the maximum number of threads is limited
 by core's stack area:
 NOVA's page-fault handling protocol works completely synchronously. When a
 page fault occurs, the faulting EC enters its page-fault portal and thereby
 activates the corresponding pager EC in core. If the pager's lookup for a
 matching dataspace within the faulter's region map succeeds, the page fault
 is resolved by delegating a memory mapping as the reply to the page-fault
 IDC call. However, if a page fault occurs on a managed dataspace, the pager
 cannot resolve it immediately. The resolution must be delayed until the
 region-map fault handler (outside of core) responds to the fault signal. In
 order to enable core to serve page faults of other threads in the meantime,
 each thread has its dedicated pager EC in core.

 Each pager EC, in turn, consumes a slot in the stack area within core. Since
 core's stack area is limited, the maximum number of ECs within core is
 limited too. Because one core EC is needed as pager for each thread outside
 of core, the available stacks within core become a limited resource
 shared by all CPU-session clients. Because each Genode component is a client
 of core's CPU service, this bounded resource is effectively shared among all
 components. Consequently, the allocation of threads on NOVA's version of
 core represents a possible covert storage channel.

 To avoid the downsides described above, we extended the NOVA IPC reply system
 call to specify an optional semaphore capability selector. The NOVA kernel
 validates the capability selector and blocks the faulting thread in the
 semaphore. The faulted thread remains blocked even after the pager has
 replied to the fault message. But the pager immediately becomes available for
 other page-fault requests. With this change, it suffices to maintain only
 one pager thread per CPU for all client threads.

 The benefits are manifold. First, the base-nova implementation converges
 more closely to other Genode base platforms. Second, core can not run out of
 threads anymore as the number of threads in core is fixed for a given setup.
 And the third benefit is that the helping mechanism of NOVA can be leveraged
 for concurrently faulting threads.

 	Remote revocation of memory mappings

 	

 In the original version of NOVA, roottask must retain mappings to all memory
 used throughout the system. In order to be able to delegate a mapping to
 another PD as response of a page fault, it must possess a local mapping
 of the physical page.
 Otherwise, it would not be able to revoke the mapping later on
 because the kernel expects roottask's mapping node as a proof of the
 authorization for the revocation of the mapping.
 Consequently, even though roottask never touches memory handed out to other
 components, it needs to have memory mappings with full access rights
 installed within its virtual address space.

 To relieve Genode's roottask (core) from the need to keep local mappings
 for all memory handed out to other components and thereby let core
 benefit from a sparsely populated address space as described in Section
 Sparsely populated core address space for base-hw, we changed the kernel's
 revoke operation to take a PD selector and a virtual address within the
 targeted PD as argument. By presenting the PD selector as a token of
 authorization over the entire PD, we do no longer need core-locally
 installed mappings as the proof of authorization. Hence, memory mappings can
 always be installed directly from the physical address space to the target
 PD.

 	Support for write-combined access to memory-mapped I/O resources

 	

 The original version of NOVA is not able to benefit from write combining
 because the kernel interface does not allow the userland to specify
 cacheability attributes for memory mappings. To achieve good throughput to
 the framebuffer, write combining is crucial. Hence, we extended the kernel
 interface to allow the userland to propagate cacheability attributes to the
 page-table entries of memory mappings and set up the x86 page attribute
 table (PAT) with a configuration for write combining.

 	Support for the virtualization of 64-bit guest operating systems

 	

 The original version of NOVA supports 32-bit guest operations only.
 We enhanced the kernel to also support 64-bit guests.

 	Resource quotas for kernel resources

 	

 The NOVA kernel lacks the ability to adopt the kernel memory pool to the
 behavior of the userland. The kernel memory pool has a fixed size, which
 cannot be changed at runtime. Even though we have not removed this
 principal limitation, we extended the kernel with the ability to
 subject kernel-memory allocations to a userlevel policy at the granularity
 of PDs. Each kernel operation that consumes kernel memory is accounted
 to a PD whereas each PD has a limited quota of kernel memory. This
 measure prevents arbitrary userland programs to bring down the entire
 system by exhausting the kernel memory. The reach of damage is limited to
 the respective PD.

 	Asynchronous notification mechanism

 	

 We extended the NOVA kernel semaphores to support signalling via chained
 NOVA semaphores. This extension enables the creation of kernel semaphores
 with a per-semaphore value, which can be bound to another kernel semaphore.
 Each bound semaphore corresponds to a Genode signal context. The
 per-semaphore value is used to distinguish different sources of signals. Now,
 a signal sender issues a submit operation on a Genode signal capability via a
 regular NOVA semaphore-up syscall. If the kernel detects that the used
 semaphore is chained to another semaphore, the up operation is delegated to
 the chained one. If a thread is blocked, it gets woken up directly and the
 per-semaphore value of the bound semaphore gets delivered. In case no thread
 is currently blocked, the signal is stored and delivered as soon as a thread
 issues the next semaphore-down operation.

 Chaining semaphores is an operation that is limited to a single level, which
 avoids attacks targeting endless loops in the kernel. The creation of such
 signals can solely be performed if the issuer has a NOVA PD capability with
 the semaphore-create permission set. On Genode, this effectively reserves the
 operation to core. Furthermore, our solution preserves the invariant of the
 original NOVA kernel that a thread may be blocked in only one semaphore at
 a time.

 	Interrupt delivery

 	

 We applied the same principle of the asynchronous notification extension
 to the delivery of interrupts by the NOVA kernel. Interrupts are delivered
 as ordinary Genode signals, which alleviate of the need for one thread per
 interrupt as required by the original NOVA kernel. The
 interrupt gets directly delivered to the address space of the driver
 in case of a Message Signalled Interrupt (MSI), or in case of a shared
 interrupt, to the x86 platform driver.

 Known limitations of NOVA

 This section summarizes the known limitations of NOVA and the NOVA version of
 core.

 	Fixed amount of kernel memory

 	

 NOVA allocates kernel objects out of a memory pool of a fixed size. The pool
 is dimensioned in the kernel's linker script
 nova/src/hypervisor.ld (at the symbol _mempool_f).

 	Bounded number of object capabilities within core

 	

 For each capability created via core's PD service,
 core allocates the corresponding NOVA portal or NOVA semaphore and maintains
 the capability selector
 during the lifetime of the associated object identity. Each allocation of
 a capability via core's PD service consumes one entry in core's capability
 space. Because the space is bounded, clients of the service could misuse
 core's capability space as covert storage channel.

img/call_rpc_obj_seq.png
RPC object
a

Object
pool
dispatch

return a

lookup by
cap,

RPC
Entrypoint

img/audio_out_session.png
shared between source and sink

Dataspace

current

position

Source

_ progress signal

img/heap_partitions.png
Server

Heap Heap

Dataspace Dataspace Dataspace

img/capability_types.png
Capability ‘

—r

I T T T T |

|5ession Dataspace | | Thread | | Parent ‘ o ‘ Signal
context
RAM ROM 1/0
mem
I T T]
i cpu ‘ IRQ PD . —
o /o TRACE LOG
port mem || |

img/simplified_nomenclature.png

img/rpc_classes.png
— T 2
Object-pool entry | * 1 Ty associates
- Object pool |-+ -+ capabilities with
capability local objects

/e
-2 %
Ent int
RPC-object base SrellD
call
= manage(RPC object base &) : Capability
Gieraicii() dissolve(RPC object base &)
PR—
| RPC interface receives
RPC object incoming RPC

requests

dispatch()

img/device_driver.png
Device driver

(M€ session O

7
Core ,

g
OH10-MEM session) (O-{1RQ session)

img/entrypoint.png
Protection domain

img/app_specific_tcb.png

img/mixer_streaming.png

img/announce.png
Application

GUI Launcher !

Q. o
{

announce(" GUI", 3 N !

Init i

) N
\
,
ZmTe

img/object_pool.png
Client PD Server PD

- @[RPC object A
\
& @ RPC object B
i

img/utilization_vs_accountability.png
Utilization ﬁ Accountability

img/memory_assignment.png
transfer(apfount, 3)

Core //’ i
PD session PD session I-()

img/object_identity.png
Protection domain
RPC object A

kernel

img/session_root.png
Application

create

GUI root

O

session(label:arora)

Init
5

img/new_rpc_obj_seq.png
RPC object
a

allocate capability
return capability cap,

B

Object
pool

associate
a with cap,

—
return l

manage a
cap,

img/no_iommu.png
MA

system bus

img/recursive_structure.png

img/nitpicker_session.png
Nitpicker session

o
Framebuffer session)

img/nitpicker_wm.png

img/noux.png
open read write

Noux session select ioctrl
stat readdir

N N Terminal a

img/protection_domain.png
Protection domain

img/packet_stream.png
shared between source and sink

acknowledge

submit
queue

img/rpc_object.png
Protection domain

img/qt_avplay.png
Codec (avplay)

Pl ey e

Nitpicker GUI server

ROM

"media”

4
<contig> N 1 Frame
“vatua-test/

value=es

</contig>

v
'
'
v

ROM “Nitpicker
ot

img/sync_bulk_seq.png
RPC call
RPC reply

request dataspace

img/on_target_gdb.png

img/nested_config.png
<config>
<parent-provides> ... </parent-provides>
<default-route> ... </default-route>

<start nam

nitpicker” caps="10

</start>

<start name="launchpad" caps="2000">
<config>

<launcher name=""Virtualbox">
<binary name="init" />
<config>
<parent-provides> ... </parent-provides>
<default-route>
<any-service> <any-child/> <parent/> </any-service>
</default-route>
<start name="nit_ft
<resource nam
<config xpos
<provides>
<service name="Input" />
<service name="Framebuffer" />
</provides>
</start>
<start name
<resource nam
<config vbox.file:

400" ypos="270" widt! 200" />

"virtualbox” caps="1000">
"RAM" quantum="1G" />
test.vbox” vm_name="TestVM" >

</config>
</start>
</config>
</launcher>
</config>
</start>
<fefite

img/assurance_vs_scalability.png
Assurance ﬁ Scalability

img/security_vs_ease_of_use.png
Security “ Ease of use

img/parent_capability.png

img/creation_initial.png
Parent

virtl memory

o (environment OO‘
! T

T
Core '

(kO
[Fomeor O

img/config_virtualization.png
request
" config”

request
" config”

request
" config”

img/anonymous_heap.png
Server

Heap

Dataspace Dataspace Dataspace

img/qt_avplay_screen.png

img/capability_call.png
Client PD
$

call(fn,args)

@ RPC object B

A = dispatch(fn, args)

call(5, fn, args)

request(3, fn, args)

kernel

img/capability_argument.png
CaParg

Client capability space

[lookup object identity for capary -> [[[]

Server capability space

i . .
' FEFL]+ <A find cap for object identity
! lookup
' A failed
. 1 no ' '
found?

O create and insert capyc.,

yes
CaPiransiated = nvalid

{ CaPtranslated = CAPfound

| apiransiated = CaPnew

Capiransiated

img/rpc_layers.png
Connection

untyped

img/parent_child.png

img/delegation.png
Protection domain 1 Protection domain 2 Protection domain 3

RPC object A {(3)

defegate = == = = | == - = - delegate- -

kernel

Cap space 2

T

identity
A

img/runtime_environment.png
Child Child Child
\ Q Q
!
XY 'y -~
3 \
Runtime env(ronment

[Parent O [Parenl]-O [Parentl-o ‘

img/iommu.png
system bus

img/arora_plugin.png

img/session_request.png
Application

session(