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Myths
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Problem: Complexity

Today’s commodity OSes Exceedingly complex trusted computing
base (TCB)

TCB of an application on Linux:

Kernel + loaded kernel modules
Daemons
X Server + window manager
Desktop environment
All running processes of the user

→ User credentials are exposed to millions of lines of code
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Problem: Complexity (II)

Implications:

High likelihood for bugs (need for frequent security updates)
Huge attack surface for directed attacks
Zero-day exploits
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Problem: Global names

Many examples on traditional systems
I UIDs, PIDs
I network interface names
I port numbers
I device nodes
I ...

Leak information

Name is a potential attack vector (ambient authority)
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Problem: Resource management

Pretension of unlimited resources
Lack of accounting
→ Largely indeterministic behavior
→ Need for complex heuristics, schedulers

Microkernel-based Systems Summer School 2013: Genode OS Framework 8



Key technologies

Microkernels
Decomponentization, kernelization
Capability-based security
Virtualization
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Tricky questions

How to...

...build a system without global names?

...trade between parties that do not know each other?

...reclaim kidnapped goods from an alien? (without violence)

...deal with distributed access-control policies?

...transparently monitor communication?

...recycle a subsystem without knowing its internal structure?
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Even more tricky questions

How to...

...avoid performance hazards through many indirections?

...translate architectural ideas into a real implementation?
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A bit of history

Research timeline at TU Dresden
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A new generation of kernels on the horizon
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Unique feature: Cross-kernel portability

When started, no suitable microkernel was available
→ Prototyped on Linux and L4/Fiasco
→ Later ported to other kernels
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Today: Rich OS construction kit

Support of a variety of kernels
OKL4, L4/Fiasco, L4ka::Pistachio, NOVA, Fiasco.OC, Linux, Codezero

Preservation of special kernel features

I OKLinux on OKL4,
I L4Linux on Fiasco.OC,
I Vancouver on NOVA,
I Real-time priorities on L4/Fiasco

Uniform API → kernel-independent components

Many ready-to-use device drivers, protocol stacks, and
3rd-party libraries
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Object capabilities

Delegation of rights

Each process lives in a virtual environment
A process that possesses a right (capability) can

I Use it (invoke)
I Delegate it to acquainted processes
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Recursive system structure
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Service announcement
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Session creation
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Session creation
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This works recursively

→ Application-specific TCB
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Combined with virtualization

Microkernel-based Systems Summer School 2013: Genode OS Framework 24



Resource management

Explicit assignment of physical resources to processes
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Resource management (II)

Resources can be attached to sessions
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Resource management (III)

Intermediation of resource requests
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Resource management (IV)

Virtualization of resources
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Resource management (V)

Server-side heap partitioning
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Parent interface

void exit(exit_value)

void announce(service_name, root_capability)

session_capability session(service_name, session_args)

void upgrade(to_session_capability, quantum)

void close(session_capability)
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Root interface

session_capability session(session_args)

void upgrade(session_capability, upgrade_args)

void close(session_capability)
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Debug output

amount write(string)
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Physical memory

ram_dataspace_capability alloc(size, cached)

void free(ram_dataspace_capability)

void ref_account(ram_session_capability)

void transfer_quota(ram_session_capability, amount)

amount quota()

amount used()
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Object identities

capability alloc(entrypoint_capability)

void free(capability)
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Threads

thread_capability create_thread(name)

void kill_thread(thread_capability)

void start(thread_capability, ip, sp)
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Memory-mapped I/O

Session arguments base, size, write-combined

io_mem_dataspace_capability dataspace()
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Port-based I/O

Session arguments base, size

value inb(address)

value inw(address)

value inl(address)

void outb(address, value)

void outw(address, value)

void outl(address, value)
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Device interrupts

Session argument irq number

void wait_for_irq()
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Protection domain

void bind_thread(thread_capability)

void assign_parent(parent_capability)
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Access to boot modules

Session argument filename

rom_dataspace_capability dataspace()
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Address-space management

local_addr attach(dataspace_capability, size, offset,

use_local_addr, local_addr,

executable)

void detach(local_addr)

void add_client(thread_capability thread)

/* managed dataspaces */

dataspace_capability dataspace()

void fault_handler(signal_context_capability)

state state()
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Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Asynchronous signal delivery

signal_context_capability alloc_context(imprint)

void free_context(signal_context_capability)

void submit(signal_context_capability, count)

signal wait_for_signal()
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Default demo scenario
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Configuration

<config>

<parent-provides>

<service name="ROM"/> <service name="RAM"/> <service name="IRQ"/>

<service name="IO_MEM"/> <service name="IO_PORT"/> <service name="CAP"/>

<service name="PD"/> <service name="RM"/> <service name="CPU"/>

<service name="LOG"/>

</parent-provides>

<default-route> <any-service> <parent/> <any-child/> </any-service> </default-route>

<start name="pci_drv">

<resource name="RAM" quantum="1M"/>

<provides><service name="PCI"/></provides> </start>

<start name="vesa_drv">

<resource name="RAM" quantum="1M"/>

<provides><service name="Framebuffer"/></provides> </start>

<start name="ps2_drv">

<resource name="RAM" quantum="1M"/>

<provides><service name="Input"/></provides> </start>

<start name="timer">

<resource name="RAM" quantum="1M"/>

<provides><service name="Timer"/></provides> </start>

<start name="nitpicker">

<resource name="RAM" quantum="1M"/>

<provides><service name="Nitpicker"/></provides> </start>

<start name="launchpad">

<resource name="RAM" quantum="32M"/> </start>

</config>
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Screenshot
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Sessions
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Virtualized framebuffer
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Sessions including virtualized framebuffer
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Remote procedure calls (RPC)
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Remote procedure calls: Classes

Microkernel-based Systems Summer School 2013: Genode OS Framework 53



Remote procedure calls: New RPC object
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Remote procedure calls: Invocation
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Shared memory
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Asynchronous notifications
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Asynchronous notifications (II)
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Mechanisms combined

RPC + shared memory
→ Synchronous bulk data (transaction)

Asynchronous notifications + shared memory
→ Asynchronous bulk data (streaming)
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Synchronous bulk data transfer
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Asynchronous bulk data transfer
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Packet stream in detail

Packet descriptor

Allocated by source
Enqueued in submit / acknowledgement queue
Describes portion of bulk buffer (offset, size)
Carries domain-specific control information

Conditions

Submit queue is full
Submit queue is empty
Acknowledgement queue is full
Acknowledgement queue is empty
→ wakeup via signals
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Packet stream example
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Classification

Kernel enables base platform

Device driver translates device interface to API

Protocol stack translates API to API

Application is leaf node in process tree

Runtime environment has one or more children

Resource multiplexer has multiple clients

combinations are possible
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Kernel
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Device driver

Translates device interface to session interface

Uses core’s IO MEM, IO PORT, IRQ services

Single client

Contains no policy

Enforces policy (device-access arbitration)
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Device driver (2)

Critical because of DMA

MMU protects physical memory from driver code
Driver code accesses device via MMIO
Device has access to whole physical memory (DMA)

→ Device driver can access whole physical memory

IOMMUs can help ...but are no golden bullet
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Device driver (3)

Even with no IOMMU, isolating drivers has benefits

Taming classes of non-DMA-related bugs

I Memory leaks
I Synchronization problems, dead-locks
I Flawed driver logic, wrong state machines
I Device initialization

Minimizing attack surface from the outside
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Protocol stack

Translates API to another (or the same) API

Does not enforce policy

Single client

May be co-located with device driver
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Protocol stack (2)

Libraries

Library Translation

Qt4 Qt4 API → various Genode sessions
lwIP socket API → NIC session

Components translating sessions

Component Translation

TCP terminal Terminal session → NIC session
iso9660 ROM session → Block session
ffat fs File-system session → Block session
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Protocol stack (3)

Components that filter sessions
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Protocol stack (4)

Operate on session interfaces, not physical resources

→ May be instantiated any number of times

→ Critical for availablility

→ Not neccessarily critical for integrity and confidentiality

→ Information leakage constrained to used interfaces

complex code should go in here
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Application

Leaf node in process tree

Uses services

Implements application logic

Provides no service
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Runtime environment

Hosts other processes as children

Defines and imposes policy!

Examples

Init
Virtual machine monitor
Debugger
Python interpreter
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Resource multiplexer

Multiplexes session interface

Multiple clients → Potential multi-level component

Free from policy

Enforce policy dictated by parent

Prone to cross-client information leakage

Prone to resource-exhaustion-based DoS
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Resource multiplexer (2)

→ Often as critical as the kernel

→ Must be as low complex as possible

→ Must work on client-provided resources

→ Must employ heap partitioning

only a few resource multiplexers needed
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Case study: Kernelizing the GUI server

Persistent security problems of GUIs

Impersonation
(Trojan horses, phishing, man in the middle)
Spyware
(input loggers, arcane observers)
Robustness/availability risks
(resource-exhaustion-based denial of service

GUI belongs to TCB → low complexity is important!
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Starting point: DOpE as secure GUI
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DOpE as secure GUI - Drawbacks

Prone to resource exhaustion by malicious clients
Provides custom look and feel*

I Stands in the way when using legacy software
I May be enhanced by theme support

Complexity of 12,000 LOC
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Straight-forward attempt: Shrinking DOpE

Revisiting the implementation

Keeping only essential functionality
→ 7,000 LOC

We loose:

Majority of widgets (grid, scale, scrollbar, etc.)
Flexible command interface
Coolness, fancyness, convenience
Real-time support

7,000 LOC are too much for such a crippled GUI!
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Bottom-up approach

What do we really need in the GUI server?

Widgets? → No
Font support? → No
Window decoration? → No
Textual command interface? → No
Look and feel, gradients, translucency? → No
Hardware abstractions (e. g., color-space conversion)? → No
Windows displaying pixel buffers? → YES
Distribution of input events? → YES
Secure labeling? → YES
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Buffers and views
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User interaction

Input-event handling

Only one receiver of each input event
Focused view defines input routing
Routing controlled by the user only
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Client-side window handling

Report motion events to focused view while a button is pressed
→ Client-side window policies (move, resize, stacking)
→ Key for achieving low server-side complexity

Emergency break
→ Special key regains control over misbehaving applications
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Trusted path

It is not sufficient to label windows!

A Trojan Horse could present an image of a secure window
Not the secure window must be marked, but all others!

Revoke some degree of freedom from the clients

Dedicated screen area, reserved for the trusted GUI
Revoking the ability to use the whole color space

→ X-Ray mode, activated by special key (x-ray key)
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Trusted path (2)

Microkernel-based Systems Summer School 2013: Genode OS Framework 88



Nitpicker results

Source-code complexity

GUI server Lines of code

X.org > 80,000
Trusted X 30,000
DOpE 12,000
EWS 4,500
Nitpicker < 2,000

Low performance overhead, no additional copy
Low-complexity clients are possible (Scout: 4,000 LOC)
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Nitpicker results (2)

Support for legacy software
Protection against spyware
Helps to uncover Trojan horses
Low source-code complexity

→ Poster child of a resource multiplexer
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Interfaces

LOG Unidirectional debug output

Terminal Bi-directional input and output
synchronous bulk

Timer Facility to block the client

Input Obtain user input
synchronous bulk

Framebuffer Display pixel buffer
synchronous bulk

PCI Represents PCI bus, find and obtain PCI devices
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Interfaces (2)

ROM Obtain read-only data modules
shared memory

Block Block-device access
packet stream

File system File-system access
packet stream

NIC Bi-directional transfer of network packets
2 x packet stream

Audio out Audio output
packet stream
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Device drivers

Session type Location

Timer os/src/drivers/timer

Block os/src/drivers/atapi

os/src/drivers/ahci

os/src/drivers/sd card

dde linux/src/drivers/usb drv

Input os/src/drivers/input/ps2

dde linux/src/drivers/usb drv

Framebuffer os/src/drivers/framebuffer/vesa

os/src/drivers/framebuffer/sdl

os/src/drivers/framebuffer/pl11x

os/src/drivers/framebuffer/omap4

Audio out linux drivers/src/drivers/audio out

Terminal os/src/drivers/uart

NIC dde ipxe/src/drivers/nic

dde linux/src/drivers/usb drv

PCI os/src/drivers/pci
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Resource multiplexers and protocol stacks

Session type Location

LOG os/src/server/terminal log

demo/src/server/nitlog

Framebuffer, demo/src/server/liquid framebuffer

Input os/src/server/nit fb

Nitpicker os/src/server/nitpicker

Terminal os/src/server/terminal crosslink

gems/src/server/terminal

gems/src/server/tcp terminal
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Resource multiplexers and protocol stacks (2)

Session type Location

Audio out os/src/server/mixer

NIC os/src/server/nic bridge

ROM os/src/server/rom prefetcher

os/src/server/tar rom

os/src/server/iso9660

Block os/src/server/rom loopdev

os/src/server/part blk

gems/src/server/http block

File system os/src/server/ram fs

libports/src/server/ffat fs
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Protocol-stack libraries

API Location

POSIX libports/lib/mk/libc.mk

libports/lib/mk/libc log.mk

libports/lib/mk/libc fs.mk

libports/lib/mk/libc rom.mk

libports/lib/mk/libc lwip.mk

libports/lib/mk/libc ffat.mk

libports/lib/mk/libc lock pipe.mk

libports/lib/mk/libc terminal.mk

Qt4 qt4/lib/mk/qt *

OpenGL libports/lib/mk/gallium.mk
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Runtime environments

Runtime Location

Init os/src/init

Loader os/src/server/loader

L4Linux ports-foc/src/l4linux

L4Android ports-foc/src/l4android

OKLinux ports-okl4/src/oklinux

Vancouver ports/src/vancouver

Noux ports/src/noux

GDB Monitor ports/src/app/gdb monitor

Python libports/lib/mk/x86 32/python.mk

Lua libports/lib/mk/moon.mk
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Thank you

Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode
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