
Microkernel-based Systems
Summer School 2013:
Genode OS Framework

Norman Feske
<norman.feske@genode-labs.com>



Outline

1. Why do we need another operating system?

2. Genode entering the picture

3. Architectural Principles

4. Core - the root of the process tree

5. Inter-process communication

6. Classification of components

7. Kernelization example

8. Components overview

Microkernel-based Systems Summer School 2013: Genode OS Framework 2



Outline

1. Why do we need another operating system?

2. Genode entering the picture

3. Architectural Principles

4. Core - the root of the process tree

5. Inter-process communication

6. Classification of components

7. Kernelization example

8. Components overview

Microkernel-based Systems Summer School 2013: Genode OS Framework 3



Myths

Microkernel-based Systems Summer School 2013: Genode OS Framework 4



Problem: Complexity

Today’s commodity OSes Exceedingly complex trusted computing
base (TCB)

TCB of an application on Linux:

Kernel + loaded kernel modules
Daemons
X Server + window manager
Desktop environment
All running processes of the user

→ User credentials are exposed to millions of lines of code

Microkernel-based Systems Summer School 2013: Genode OS Framework 5



Problem: Complexity (II)

Implications:

High likelihood for bugs (need for frequent security updates)
Huge attack surface for directed attacks
Zero-day exploits

Microkernel-based Systems Summer School 2013: Genode OS Framework 6



Problem: Global names

Many examples on traditional systems
I UIDs, PIDs
I network interface names
I port numbers
I device nodes
I ...

Leak information

Name is a potential attack vector (ambient authority)

Microkernel-based Systems Summer School 2013: Genode OS Framework 7



Problem: Resource management

Pretension of unlimited resources
Lack of accounting
→ Largely indeterministic behavior
→ Need for complex heuristics, schedulers

Microkernel-based Systems Summer School 2013: Genode OS Framework 8



Key technologies

Microkernels
Decomponentization, kernelization
Capability-based security
Virtualization

Microkernel-based Systems Summer School 2013: Genode OS Framework 9



Tricky questions

How to...

...build a system without global names?

...trade between parties that do not know each other?

...reclaim kidnapped goods from an alien? (without violence)

...deal with distributed access-control policies?

...transparently monitor communication?

...recycle a subsystem without knowing its internal structure?

Microkernel-based Systems Summer School 2013: Genode OS Framework 10



Even more tricky questions

How to...

...avoid performance hazards through many indirections?

...translate architectural ideas into a real implementation?

Microkernel-based Systems Summer School 2013: Genode OS Framework 11



Outline

1. Why do we need another operating system?

2. Genode entering the picture

3. Architectural Principles

4. Core - the root of the process tree

5. Inter-process communication

6. Classification of components

7. Kernelization example

8. Components overview

Microkernel-based Systems Summer School 2013: Genode OS Framework 12



A bit of history

Research timeline at TU Dresden

Microkernel-based Systems Summer School 2013: Genode OS Framework 13



A new generation of kernels on the horizon

Microkernel-based Systems Summer School 2013: Genode OS Framework 14



Unique feature: Cross-kernel portability

When started, no suitable microkernel was available
→ Prototyped on Linux and L4/Fiasco
→ Later ported to other kernels

Microkernel-based Systems Summer School 2013: Genode OS Framework 15



Today: Rich OS construction kit

Support of a variety of kernels
OKL4, L4/Fiasco, L4ka::Pistachio, NOVA, Fiasco.OC, Linux, Codezero

Preservation of special kernel features

I OKLinux on OKL4,
I L4Linux on Fiasco.OC,
I Vancouver on NOVA,
I Real-time priorities on L4/Fiasco

Uniform API → kernel-independent components

Many ready-to-use device drivers, protocol stacks, and
3rd-party libraries

Microkernel-based Systems Summer School 2013: Genode OS Framework 16



Outline

1. Why do we need another operating system?

2. Genode entering the picture

3. Architectural Principles

4. Core - the root of the process tree

5. Inter-process communication

6. Classification of components

7. Kernelization example

8. Components overview

Microkernel-based Systems Summer School 2013: Genode OS Framework 17



Object capabilities

Delegation of rights

Each process lives in a virtual environment
A process that possesses a right (capability) can

I Use it (invoke)
I Delegate it to acquainted processes

Microkernel-based Systems Summer School 2013: Genode OS Framework 18



Recursive system structure

Microkernel-based Systems Summer School 2013: Genode OS Framework 19



Service announcement

Microkernel-based Systems Summer School 2013: Genode OS Framework 20



Session creation

Microkernel-based Systems Summer School 2013: Genode OS Framework 21



Session creation

Microkernel-based Systems Summer School 2013: Genode OS Framework 22



This works recursively

→ Application-specific TCB

Microkernel-based Systems Summer School 2013: Genode OS Framework 23



Combined with virtualization

Microkernel-based Systems Summer School 2013: Genode OS Framework 24



Resource management

Explicit assignment of physical resources to processes

Microkernel-based Systems Summer School 2013: Genode OS Framework 25



Resource management (II)

Resources can be attached to sessions

Microkernel-based Systems Summer School 2013: Genode OS Framework 26



Resource management (III)

Intermediation of resource requests

Microkernel-based Systems Summer School 2013: Genode OS Framework 27



Resource management (IV)

Virtualization of resources

Microkernel-based Systems Summer School 2013: Genode OS Framework 28



Resource management (V)

Server-side heap partitioning

Microkernel-based Systems Summer School 2013: Genode OS Framework 29



Parent interface

void exit(exit_value)

void announce(service_name, root_capability)

session_capability session(service_name, session_args)

void upgrade(to_session_capability, quantum)

void close(session_capability)

Microkernel-based Systems Summer School 2013: Genode OS Framework 30



Root interface

session_capability session(session_args)

void upgrade(session_capability, upgrade_args)

void close(session_capability)

Microkernel-based Systems Summer School 2013: Genode OS Framework 31



Outline

1. Why do we need another operating system?

2. Genode entering the picture

3. Architectural Principles

4. Core - the root of the process tree

5. Inter-process communication

6. Classification of components

7. Kernelization example

8. Components overview

Microkernel-based Systems Summer School 2013: Genode OS Framework 32



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Microkernel-based Systems Summer School 2013: Genode OS Framework 33



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Debug output

amount write(string)

Microkernel-based Systems Summer School 2013: Genode OS Framework 34



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Physical memory

ram_dataspace_capability alloc(size, cached)

void free(ram_dataspace_capability)

void ref_account(ram_session_capability)

void transfer_quota(ram_session_capability, amount)

amount quota()

amount used()

Microkernel-based Systems Summer School 2013: Genode OS Framework 35



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Object identities

capability alloc(entrypoint_capability)

void free(capability)

Microkernel-based Systems Summer School 2013: Genode OS Framework 36



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Threads

thread_capability create_thread(name)

void kill_thread(thread_capability)

void start(thread_capability, ip, sp)

Microkernel-based Systems Summer School 2013: Genode OS Framework 37



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Memory-mapped I/O

Session arguments base, size, write-combined

io_mem_dataspace_capability dataspace()

Microkernel-based Systems Summer School 2013: Genode OS Framework 38



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Port-based I/O

Session arguments base, size

value inb(address)

value inw(address)

value inl(address)

void outb(address, value)

void outw(address, value)

void outl(address, value)

Microkernel-based Systems Summer School 2013: Genode OS Framework 39



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Device interrupts

Session argument irq number

void wait_for_irq()

Microkernel-based Systems Summer School 2013: Genode OS Framework 40



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Protection domain

void bind_thread(thread_capability)

void assign_parent(parent_capability)

Microkernel-based Systems Summer School 2013: Genode OS Framework 41



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Access to boot modules

Session argument filename

rom_dataspace_capability dataspace()

Microkernel-based Systems Summer School 2013: Genode OS Framework 42



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Address-space management

local_addr attach(dataspace_capability, size, offset,

use_local_addr, local_addr,

executable)

void detach(local_addr)

void add_client(thread_capability thread)

/* managed dataspaces */

dataspace_capability dataspace()

void fault_handler(signal_context_capability)

state state()

Microkernel-based Systems Summer School 2013: Genode OS Framework 43



Core services

LOG RAM CAP CPU IO MEM IO PORT IRQ PD ROM RM SIGNAL

Asynchronous signal delivery

signal_context_capability alloc_context(imprint)

void free_context(signal_context_capability)

void submit(signal_context_capability, count)

signal wait_for_signal()

Microkernel-based Systems Summer School 2013: Genode OS Framework 44



Default demo scenario

Microkernel-based Systems Summer School 2013: Genode OS Framework 45



Configuration

<config>

<parent-provides>

<service name="ROM"/> <service name="RAM"/> <service name="IRQ"/>

<service name="IO_MEM"/> <service name="IO_PORT"/> <service name="CAP"/>

<service name="PD"/> <service name="RM"/> <service name="CPU"/>

<service name="LOG"/>

</parent-provides>

<default-route> <any-service> <parent/> <any-child/> </any-service> </default-route>

<start name="pci_drv">

<resource name="RAM" quantum="1M"/>

<provides><service name="PCI"/></provides> </start>

<start name="vesa_drv">

<resource name="RAM" quantum="1M"/>

<provides><service name="Framebuffer"/></provides> </start>

<start name="ps2_drv">

<resource name="RAM" quantum="1M"/>

<provides><service name="Input"/></provides> </start>

<start name="timer">

<resource name="RAM" quantum="1M"/>

<provides><service name="Timer"/></provides> </start>

<start name="nitpicker">

<resource name="RAM" quantum="1M"/>

<provides><service name="Nitpicker"/></provides> </start>

<start name="launchpad">

<resource name="RAM" quantum="32M"/> </start>

</config>

Microkernel-based Systems Summer School 2013: Genode OS Framework 46



Screenshot

Microkernel-based Systems Summer School 2013: Genode OS Framework 47



Sessions

Microkernel-based Systems Summer School 2013: Genode OS Framework 48



Virtualized framebuffer

Microkernel-based Systems Summer School 2013: Genode OS Framework 49



Sessions including virtualized framebuffer

Microkernel-based Systems Summer School 2013: Genode OS Framework 50



Outline

1. Why do we need another operating system?

2. Genode entering the picture

3. Architectural Principles

4. Core - the root of the process tree

5. Inter-process communication

6. Classification of components

7. Kernelization example

8. Components overview

Microkernel-based Systems Summer School 2013: Genode OS Framework 51



Remote procedure calls (RPC)

Microkernel-based Systems Summer School 2013: Genode OS Framework 52



Remote procedure calls: Classes

Microkernel-based Systems Summer School 2013: Genode OS Framework 53



Remote procedure calls: New RPC object

Microkernel-based Systems Summer School 2013: Genode OS Framework 54



Remote procedure calls: Invocation

Microkernel-based Systems Summer School 2013: Genode OS Framework 55



Shared memory

Microkernel-based Systems Summer School 2013: Genode OS Framework 56



Asynchronous notifications

Microkernel-based Systems Summer School 2013: Genode OS Framework 57



Asynchronous notifications (II)

Microkernel-based Systems Summer School 2013: Genode OS Framework 58



Mechanisms combined

RPC + shared memory
→ Synchronous bulk data (transaction)

Asynchronous notifications + shared memory
→ Asynchronous bulk data (streaming)

Microkernel-based Systems Summer School 2013: Genode OS Framework 59



Synchronous bulk data transfer

Microkernel-based Systems Summer School 2013: Genode OS Framework 60



Asynchronous bulk data transfer

Microkernel-based Systems Summer School 2013: Genode OS Framework 61



Packet stream in detail

Packet descriptor

Allocated by source
Enqueued in submit / acknowledgement queue
Describes portion of bulk buffer (offset, size)
Carries domain-specific control information

Conditions

Submit queue is full
Submit queue is empty
Acknowledgement queue is full
Acknowledgement queue is empty
→ wakeup via signals

Microkernel-based Systems Summer School 2013: Genode OS Framework 62



Packet stream example

Microkernel-based Systems Summer School 2013: Genode OS Framework 63



Outline

1. Why do we need another operating system?

2. Genode entering the picture

3. Architectural Principles

4. Core - the root of the process tree

5. Inter-process communication

6. Classification of components

7. Kernelization example

8. Components overview

Microkernel-based Systems Summer School 2013: Genode OS Framework 64



Classification

Kernel enables base platform

Device driver translates device interface to API

Protocol stack translates API to API

Application is leaf node in process tree

Runtime environment has one or more children

Resource multiplexer has multiple clients

combinations are possible

Microkernel-based Systems Summer School 2013: Genode OS Framework 65



Kernel

Microkernel-based Systems Summer School 2013: Genode OS Framework 66



Device driver

Translates device interface to session interface

Uses core’s IO MEM, IO PORT, IRQ services

Single client

Contains no policy

Enforces policy (device-access arbitration)

Microkernel-based Systems Summer School 2013: Genode OS Framework 67



Device driver (2)

Critical because of DMA

MMU protects physical memory from driver code
Driver code accesses device via MMIO
Device has access to whole physical memory (DMA)

→ Device driver can access whole physical memory

IOMMUs can help ...but are no golden bullet

Microkernel-based Systems Summer School 2013: Genode OS Framework 68



Device driver (3)

Even with no IOMMU, isolating drivers has benefits

Taming classes of non-DMA-related bugs

I Memory leaks
I Synchronization problems, dead-locks
I Flawed driver logic, wrong state machines
I Device initialization

Minimizing attack surface from the outside

Microkernel-based Systems Summer School 2013: Genode OS Framework 69



Protocol stack

Translates API to another (or the same) API

Does not enforce policy

Single client

May be co-located with device driver

Microkernel-based Systems Summer School 2013: Genode OS Framework 70



Protocol stack (2)

Libraries

Library Translation

Qt4 Qt4 API → various Genode sessions
lwIP socket API → NIC session

Components translating sessions

Component Translation

TCP terminal Terminal session → NIC session
iso9660 ROM session → Block session
ffat fs File-system session → Block session

Microkernel-based Systems Summer School 2013: Genode OS Framework 71



Protocol stack (3)

Components that filter sessions

Microkernel-based Systems Summer School 2013: Genode OS Framework 72



Protocol stack (4)

Operate on session interfaces, not physical resources

→ May be instantiated any number of times

→ Critical for availablility

→ Not neccessarily critical for integrity and confidentiality

→ Information leakage constrained to used interfaces

complex code should go in here

Microkernel-based Systems Summer School 2013: Genode OS Framework 73



Application

Leaf node in process tree

Uses services

Implements application logic

Provides no service

Microkernel-based Systems Summer School 2013: Genode OS Framework 74



Runtime environment

Hosts other processes as children

Defines and imposes policy!

Examples

Init
Virtual machine monitor
Debugger
Python interpreter

Microkernel-based Systems Summer School 2013: Genode OS Framework 75



Resource multiplexer

Multiplexes session interface

Multiple clients → Potential multi-level component

Free from policy

Enforce policy dictated by parent

Prone to cross-client information leakage

Prone to resource-exhaustion-based DoS

Microkernel-based Systems Summer School 2013: Genode OS Framework 76



Resource multiplexer (2)

→ Often as critical as the kernel

→ Must be as low complex as possible

→ Must work on client-provided resources

→ Must employ heap partitioning

only a few resource multiplexers needed

Microkernel-based Systems Summer School 2013: Genode OS Framework 77



Outline

1. Why do we need another operating system?

2. Genode entering the picture

3. Architectural Principles

4. Core - the root of the process tree

5. Inter-process communication

6. Classification of components

7. Kernelization example

8. Components overview

Microkernel-based Systems Summer School 2013: Genode OS Framework 78



Case study: Kernelizing the GUI server

Persistent security problems of GUIs

Impersonation
(Trojan horses, phishing, man in the middle)
Spyware
(input loggers, arcane observers)
Robustness/availability risks
(resource-exhaustion-based denial of service

GUI belongs to TCB → low complexity is important!

Microkernel-based Systems Summer School 2013: Genode OS Framework 79



Starting point: DOpE as secure GUI

Microkernel-based Systems Summer School 2013: Genode OS Framework 80



DOpE as secure GUI - Drawbacks

Prone to resource exhaustion by malicious clients
Provides custom look and feel*

I Stands in the way when using legacy software
I May be enhanced by theme support

Complexity of 12,000 LOC

Microkernel-based Systems Summer School 2013: Genode OS Framework 81



Straight-forward attempt: Shrinking DOpE

Revisiting the implementation

Keeping only essential functionality
→ 7,000 LOC

We loose:

Majority of widgets (grid, scale, scrollbar, etc.)
Flexible command interface
Coolness, fancyness, convenience
Real-time support

7,000 LOC are too much for such a crippled GUI!

Microkernel-based Systems Summer School 2013: Genode OS Framework 82



Bottom-up approach

What do we really need in the GUI server?

Widgets? → No
Font support? → No
Window decoration? → No
Textual command interface? → No
Look and feel, gradients, translucency? → No
Hardware abstractions (e. g., color-space conversion)? → No
Windows displaying pixel buffers? → YES
Distribution of input events? → YES
Secure labeling? → YES

Microkernel-based Systems Summer School 2013: Genode OS Framework 83



Buffers and views

Microkernel-based Systems Summer School 2013: Genode OS Framework 84



User interaction

Input-event handling

Only one receiver of each input event
Focused view defines input routing
Routing controlled by the user only

Microkernel-based Systems Summer School 2013: Genode OS Framework 85



Client-side window handling

Report motion events to focused view while a button is pressed
→ Client-side window policies (move, resize, stacking)
→ Key for achieving low server-side complexity

Emergency break
→ Special key regains control over misbehaving applications

Microkernel-based Systems Summer School 2013: Genode OS Framework 86



Trusted path

It is not sufficient to label windows!

A Trojan Horse could present an image of a secure window
Not the secure window must be marked, but all others!

Revoke some degree of freedom from the clients

Dedicated screen area, reserved for the trusted GUI
Revoking the ability to use the whole color space

→ X-Ray mode, activated by special key (x-ray key)

Microkernel-based Systems Summer School 2013: Genode OS Framework 87



Trusted path (2)

Microkernel-based Systems Summer School 2013: Genode OS Framework 88



Nitpicker results

Source-code complexity

GUI server Lines of code

X.org > 80,000
Trusted X 30,000
DOpE 12,000
EWS 4,500
Nitpicker < 2,000

Low performance overhead, no additional copy
Low-complexity clients are possible (Scout: 4,000 LOC)

Microkernel-based Systems Summer School 2013: Genode OS Framework 89



Nitpicker results (2)

Support for legacy software
Protection against spyware
Helps to uncover Trojan horses
Low source-code complexity

→ Poster child of a resource multiplexer

Microkernel-based Systems Summer School 2013: Genode OS Framework 90



Outline

1. Why do we need another operating system?

2. Genode entering the picture

3. Architectural Principles

4. Core - the root of the process tree

5. Inter-process communication

6. Classification of components

7. Kernelization example

8. Components overview

Microkernel-based Systems Summer School 2013: Genode OS Framework 91



Interfaces

LOG Unidirectional debug output

Terminal Bi-directional input and output
synchronous bulk

Timer Facility to block the client

Input Obtain user input
synchronous bulk

Framebuffer Display pixel buffer
synchronous bulk

PCI Represents PCI bus, find and obtain PCI devices

Microkernel-based Systems Summer School 2013: Genode OS Framework 92



Interfaces (2)

ROM Obtain read-only data modules
shared memory

Block Block-device access
packet stream

File system File-system access
packet stream

NIC Bi-directional transfer of network packets
2 x packet stream

Audio out Audio output
packet stream

Microkernel-based Systems Summer School 2013: Genode OS Framework 93



Device drivers

Session type Location

Timer os/src/drivers/timer

Block os/src/drivers/atapi

os/src/drivers/ahci

os/src/drivers/sd card

dde linux/src/drivers/usb drv

Input os/src/drivers/input/ps2

dde linux/src/drivers/usb drv

Framebuffer os/src/drivers/framebuffer/vesa

os/src/drivers/framebuffer/sdl

os/src/drivers/framebuffer/pl11x

os/src/drivers/framebuffer/omap4

Audio out linux drivers/src/drivers/audio out

Terminal os/src/drivers/uart

NIC dde ipxe/src/drivers/nic

dde linux/src/drivers/usb drv

PCI os/src/drivers/pci

Microkernel-based Systems Summer School 2013: Genode OS Framework 94



Resource multiplexers and protocol stacks

Session type Location

LOG os/src/server/terminal log

demo/src/server/nitlog

Framebuffer, demo/src/server/liquid framebuffer

Input os/src/server/nit fb

Nitpicker os/src/server/nitpicker

Terminal os/src/server/terminal crosslink

gems/src/server/terminal

gems/src/server/tcp terminal

Microkernel-based Systems Summer School 2013: Genode OS Framework 95



Resource multiplexers and protocol stacks (2)

Session type Location

Audio out os/src/server/mixer

NIC os/src/server/nic bridge

ROM os/src/server/rom prefetcher

os/src/server/tar rom

os/src/server/iso9660

Block os/src/server/rom loopdev

os/src/server/part blk

gems/src/server/http block

File system os/src/server/ram fs

libports/src/server/ffat fs

Microkernel-based Systems Summer School 2013: Genode OS Framework 96



Protocol-stack libraries

API Location

POSIX libports/lib/mk/libc.mk

libports/lib/mk/libc log.mk

libports/lib/mk/libc fs.mk

libports/lib/mk/libc rom.mk

libports/lib/mk/libc lwip.mk

libports/lib/mk/libc ffat.mk

libports/lib/mk/libc lock pipe.mk

libports/lib/mk/libc terminal.mk

Qt4 qt4/lib/mk/qt *

OpenGL libports/lib/mk/gallium.mk

Microkernel-based Systems Summer School 2013: Genode OS Framework 97



Runtime environments

Runtime Location

Init os/src/init

Loader os/src/server/loader

L4Linux ports-foc/src/l4linux

L4Android ports-foc/src/l4android

OKLinux ports-okl4/src/oklinux

Vancouver ports/src/vancouver

Noux ports/src/noux

GDB Monitor ports/src/app/gdb monitor

Python libports/lib/mk/x86 32/python.mk

Lua libports/lib/mk/moon.mk

Microkernel-based Systems Summer School 2013: Genode OS Framework 98



Thank you

Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode

Microkernel-based Systems Summer School 2013: Genode OS Framework 99


	Why do we need another operating system?
	Genode entering the picture
	Architectural Principles
	Core - the root of the process tree
	Inter-process communication
	Classification of components
	Kernelization example
	Components overview

