Microkernel-based Systems
Summer School 2013:
Genode OS Framework

&

Norman Feske
<norman.feske@genode-labs.com>

\\\//‘. Outline

. Why do we need another operating system?
. Genode entering the picture

. Architectural Principles

. Core - the root of the process tree

. Inter-process communication

. Classification of components

. Kernelization example

. Components overview

. Why do we need another operating system?

. Genode entering the picture

. Architectural Principles

. Core - the root of the process tree
. Inter-process communication

. Classification of components

. Kernelization example

. Components overview

Ease of use Security

Resource Resource
utilization accountability

Complexity Scalability

Problem: Complexity

Today's commodity OSes Exceedingly complex trusted computing
base (TCB)

TCB of an application on Linux:

» Kernel + loaded kernel modules

= Daemons

» X Server 4+ window manager
Desktop environment

= All running processes of the user

— User credentials are exposed to millions of lines of code

Implications:

= High likelihood for bugs (need for frequent security updates)
» Huge attack surface for directed attacks
= Zero-day exploits

Problem: Global names

» Many examples on traditional systems
UIDs, PIDs
network interface names
port numbers
device nodes

= Leak information

= Name is a potential attack vector (ambient authority)

Problem: Resource management

= Pretension of unlimited resources
= Lack of accounting
— Largely indeterministic behavior
— Need for complex heuristics, schedulers

Cpu
dump_|

Microkernel-based Systems Summer School 2013: Genode OS Framework

Key technologies

Microkernels

Decomponentization, kernelization
Capability-based security
Virtualization

\\\//‘. Tricky questions

How to...

...build a system without global names?

...trade between parties that do not know each other?
...reclaim kidnapped goods from an alien? (without violence)
...deal with distributed access-control policies?
...transparently monitor communication?

...recycle a subsystem without knowing its internal structure?

Even more tricky questions

How to...

» ...avoid performance hazards through many indirections?
» ...translate architectural ideas into a real implementation?

. Why do we need another operating system?

. Genode entering the picture

. Architectural Principles

. Core - the root of the process tree
. Inter-process communication

. Classification of components

. Kernelization example

. Components overview

A bit of history

single experiments componentization complex scenarios

Fis
gCCY

Projects

Virtualization

Research

Focus Realtime and QoS T o
Reliability and Security

L 1 1 1 1 ! I 1 L I I
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Research timeline at TU Dresden

eneration of kernels on the horizon

single experiments componentization -~ com'ﬁi'l'ékir&enarios

. Fiasco
Projects

L4Linux

L4Linux
Sl Ldenv

Virtualization
Research
Focus Realtime and QoS — 1
Reliability and Security

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Unique feature: Cross-kernel portability

When started, no suitable microkernel was available
— Prototyped on Linux and L4/Fiasco
— Later ported to other kernels

Today: Rich OS construction kit

Support of a variety of kernels
OKL4, L4 /Fiasco, L4ka::Pistachio, NOVA, Fiasco.OC, Linux, Codezero

Preservation of special kernel features

OKLinux on OKL4,

L4Linux on Fiasco.OC,
Vancouver on NOVA,

Real-time priorities on L4/Fiasco

Uniform APl — kernel-independent components

Many ready-to-use device drivers, protocol stacks, and
3rd-party libraries

. Why do we need another operating system?

. Genode entering the picture

. Architectural Principles

. Core - the root of the process tree
. Inter-process communication

. Classification of components

. Kernelization example

. Components overview

\\\\/é. Object capabilities

Delegation of rights

» Each process lives in a virtual environment

= A process that possesses a right (capability) can
» Use it (invoke)
» Delegate it to acquainted processes

Recursive system structure

User
Application

User

Session

Service announcement

User
Application
User
Session

announce("GUI")

Session creation

User
Application

session("GUI", "input:read label:terminal")

User
Session

Session creation

User
Application

session("GUI", "input:read label:terminal")

User
Session

session("input:npne; label:olaf.xterm") sessign("GUI", "label:olaf.xterm; input:read")

\\\\/é. This works recursively

— Application-specific TCB

Combined with virtualization

ement

Explicit assignment of physical resources to processes

=

Resources can be attached to sessions

Intermediation of resource requests

T ™

Client

requ

r_"—ﬁ
xder
Parent

Virtualization of resources

l Client

request response
"config"

config

Parent
ROM service

L4

Parent interface

Server
announce("G

Parent

void exit(exit_value)
void announce(service_name, root_capability)

session_capability session(service_name, session_args)

void upgrade(to_session_capability, quantum)

void close(session_capability)

Root interface

Client '

.

Parent

session

.

—

"GUI, ...)

session_capability session(session_args)

void upgrade(session_capability, upgrade_args)

void close(session_capability)

. Why do we need another operating system?
. Genode entering the picture

. Architectural Principles

. Core - the root of the process tree

. Inter-process communication
. Classification of components
. Kernelization example

. Components overview

Core services

LOG RAM CAP CPU IO_-MEM IO_PORT IRQ PD ROM RM SIGNAL

Core services

LOG RAM CAP CPU IO_MEM IO_PORT IRQ PD ROM RM SIGNAL

Debug output

amount write(string)

Core services

LOG RAM CAP CPU IO_-MEM IO_PORT IRQ PD ROM RM SIGNAL

Physical memory
ram_dataspace_capability alloc(size, cached)
void free(ram_dataspace_capability)

void ref_account(ram_session_capability)

void transfer_quota(ram_session_capability, amount)

amount quota()

amount used()

Core services

LOG RAM CAP CPU IO_-MEM IO_PORT IRQ PD ROM RM SIGNAL

Object identities

capability alloc(entrypoint_capability)

void free(capability)

Core services

LOG RAM CAP CPU IO_-MEM IO_PORT IRQ PD ROM RM SIGNAL

Threads
thread_capability create_thread(name)
void kill_thread(thread_capability)

void start(thread_capability, ip, sp)

Core services

LOG RAM CAP CPU I0O_MEM IO_PORT IRQ PD ROM RM SIGNAL

Memory-mapped 1/0

Session arguments base, size, write-combined

io_mem_dataspace_capability dataspace()

Core services

LOG RAM CAP CPU IO_MEM I0_PORT IRQ PD ROM RM SIGNAL

Port-based 1/0

Session arguments base, size

value inb(address)
value inw(address)
value inl(address)

void outb(address, value)
void outw(address, value)
void outl(address, value)

Core services

LOG RAM CAP CPU IO_LMEM IO_PORT IRQ PD ROM RM SIGNAL

Device interrupts

Session argument irq number

void wait_for_irq()

Core services

LOG RAM CAP CPU IO_MEM IO_PORT IRQ PD ROM RM SIGNAL

Protection domain

void bind_thread(thread_capability)

void assign_parent(parent_capability)

Core services

LOG RAM CAP CPU IO_MEM IO_PORT IRQ PD ROM RM SIGNAL

Access to boot modules

Session argument filename

rom_dataspace_capability dataspace()

Core services

LOG RAM CAP CPU IO_MEM IO_PORT IRQ PD ROM RM SIGNAL
Address-space management
local_addr attach(dataspace_capability, size, offset,

use_local_addr, local_addr,
executable)

void detach(local_addr)

void add_client(thread_capability thread)
/* managed dataspaces */
dataspace_capability dataspace()

void fault_handler(signal_context_capability)
state state()

Core services

LOG RAM CAP CPU IO_LMEM IO_PORT IRQ PD ROM RM SIGNAL

Asynchronous signal delivery

signal_context_capability alloc_context(imprint)

void free_context(signal_context_capability)

void submit(signal_context_capability, count)

signal wait_for_signal()

User Mode

Privileged Mode

Configuration

<config>

<parent-provides>
<service name="ROM"/> <service name="RAM"/> <service name="IRQ"/>
<service name="IO_MEM"/> <service name="I0_PORT"/> <service name="CAP"/>
<service name="PD"/> <service name="RM"/> <service name="CPU"/>
<service name="L0G"/>

</parent-provides>

<default-route> <any-service> <parent/> <any-child/> </any-service> </default-route>

<start name="pci_drv">
<resource name="RAM" quantum="1M"/>
<provides><service name="PCI"/></provides> </start>

<start name="vesa_drv">
<resource name="RAM" quantum="1M"/>
<provides><service name="Framebuffer"/></provides> </start>

<start name="ps2_drv'">
<resource name="RAM" quantum="1M"/>
<provides><service name="Input"/></provides> </start>

<start name="timer">
<resource name="RAM" quantum="1M"/>
<provides><service name="Timer"/></provides> </start>

<start name="nitpicker">
<resource name="RAM" quantum="1M"/>
<provides><service name="Nitpicker"/></provides> </start>

<start name="launchpad">
<resource name="RAM" quantum="32M"/> </start>

</config>

Yy -,
&Z Screenshot
A o
r N
Launchpad
Status
Launcher
testnit @ =
Scout EETEL:
launchpad @
nitog @
liquid fb - E—
nitpicker @
Children
. o
— Microkernel-based Systems Summer School 2013: Genode OS Framework 47

User Mode

Privileged Mode

|\

Virtualized framebuffer

—

Introduction to Genode

Introduction to

Quota E=====r
Launcher

Genode Is a cc ding special-purpose el
operating er of components such
s, and applications. | launchpad
zed using only a few vet nitiog_
and thereby, allow for i T
nitpicker @@ 1
Children

— Microkernel-based Systems Summer School 2013: Genode OS Framework

Nitpicker

Frame
Buffer

Nitpicker

T

User Mode

Privileged Mode

. Why do we need another operating system?

. Genode entering the picture

. Architectural Principles

. Core - the root of the process tree
. Inter-process communication

. Classification of components

. Kernelization example

. Components overview

Remote procedure calls (RPC)

Client Server

Connection Object framework typed capabilities

RPC stub code RPC stub code

IPC framework IPC framework

yped capabilities
Kernel IPC mechanism

Object_pool_entry

capability
local ke:

Rpc_object_base

Rpc_entrypoint

associates
capabilities with
local objects

dispatch()

*

Rpc_objec

Capability manage(Rpc_object_base *)

dispatch()

dissolve‘REc_obiect_base 'a

receives
incoming RPC
requests

@ Remote procedure calls: New RPC object

Client

Object pool

_______ RPC object
gl

|
allocate capability |
T

|
| |
return capability ‘cap!
I

L]

& Remote procedure calls: Invocation

RPC . RPC object
entrypoint Object pool ‘a'
invoke 'a_ -

lookup by
a_cap’ =

return &'

<

RPC function

Client

2@
&

Dataspace

al

te

tapability 'ds_

]

ttach

Asynchronous notifications

submit (fire and forget) wait/poll

Signaller : . Signal
Transmitter »| Receiver handler

-

Signal
transmitter

for 'c_cap'

submit

submit

submit

delegate |

Signal
context 'c'

retul

im
signal cantexr@pability ‘c_cap'

i
|
wait for sign: !
return E;]
context 'c’, cou| t2

wait for signal_

T

|
i return
] context 'c', coul/”

\\\\é Mechanisms combined

RPC + shared memory
— Synchronous bulk data (transaction)

Asynchronous notifications + shared memory
— Asynchronous bulk data (streaming)

Client

—

request datéspace
return dataspace capability
[

RPC reply

\- Asynchronous bulk data transfer

shared between source and sink

Jodl

get'acﬂed

ackn?:‘u:!edge

= --[elease. -

gﬁbmit

@ W)

Su bmit (-~

queue =
Yo 2N

Packet stream in detail

Packet descriptor

» Allocated by source

» Enqueued in submit / acknowledgement queue
= Describes portion of bulk buffer (offset, size)

= Carries domain-specific control information

Conditions

Submit queue is full

Submit queue is empty
Acknowledgement queue is full
Acknowledgement queue is empty
— wakeup via signals

Packet stream example

Network application
(e.g., DHCP, HTTP daemon)

IwlP

ion Client

packet
stream

Network driver

(e.g., Linux driver in
Device-Driver Environment)

;

Network device
(access via core's I/O services)

. Why do we need another operating system?
. Genode entering the picture

. Architectural Principles

. Core - the root of the process tree

. Inter-process communication

. Classification of components

. Kernelization example

. Components overview

Classification

Kernel enables base platform

Device driver translates device interface to API
Protocol stack translates API to API
Application is leaf node in process tree
Runtime environment has one or more children
Resource multiplexer has multiple clients

combinations are possible

FIASC0.0¢ OKL4 Q
[l-\x NOVA CODEZERO

Fi ASC 0 Microhypervisor

&4 Ka Microsiaze

Device driver

Translates device interface to session interface

Uses core’s IO_MEM, I0_PORT, IRQ services

Single client

Contains no policy

Enforces policy (device-access arbitration)

Device driver (2)

Critical because of DMA

» MMU protects physical memory from driver code
» Driver code accesses device via MMIO
» Device has access to whole physical memory (DMA)

— Device driver can access whole physical memory

IOMMUs can help ...but are no golden bullet

Device driver (3)

Even with no IOMMU, isolating drivers has benefits

» Taming classes of non-DMA-related bugs

Memory leaks
Synchronization problems, dead-locks

>
>
» Flawed driver logic, wrong state machines
» Device initialization

= Minimizing attack surface from the outside

Protocol stack

Translates API to another (or the same) API

= Does not enforce policy

= Single client

» May be co-located with device driver

Protocol stack (2)

Libraries

| Library | Translation

Qt4 Qt4 APl — various Genode sessions
IwlP socket APl — NIC session

Components translating sessions

| Component | Translation

TCP terminal | Terminal session — NIC session
1509660 ROM session — Block session
ffat_fs File-system session — Block session

Protocol stack (3

Components that filter sessions

ROM TAR ROM

client /[container.tar

READMEj / README ﬁ

request
"README"

requést
"contaifer.tar"

Protocol stack (4)

Operate on session interfaces, not physical resources

— May be instantiated any number of times

— Ciritical for availablility

— Not neccessarily critical for integrity and confidentiality
— Information leakage constrained to used interfaces

complex code should go in here

bplication

Leaf node in process tree

= Uses services

» Implements application logic

= Provides no service

Runtime environment

Hosts other processes as children

Defines and imposes policy!

Examples

Init

Virtual machine monitor
Debugger

Python interpreter

Resource multiplexer

Multiplexes session interface

Multiple clients — Potential multi-level component

Free from policy

Enforce policy dictated by parent

Prone to cross-client information leakage

Prone to resource-exhaustion-based DoS

Resource multiplexer (2)

— Often as critical as the kernel

— Must be as low complex as possible

— Must work on client-provided resources

— Must employ heap partitioning

only a few resource multiplexers needed

. Why do we need another operating system?

. Genode entering the picture

. Architectural Principles

. Core - the root of the process tree
. Inter-process communication

. Classification of components

. Kernelization example

. Components overview

Case study: Kernelizing the GUI server

Persistent security problems of GUIs

» Impersonation
(Trojan horses, phishing, man in the middle)
» Spyware
(input loggers, arcane observers)
» Robustness/availability risks
(resource-exhaustion-based denial of service

GUI belongs to TCB — low complexity is important!

r point: DOpE as secure GUI

Frame buffer
User Input

DOpE as secure GUI - Drawbacks

= Prone to resource exhaustion by malicious clients
= Provides custom look and feel*

» Stands in the way when using legacy software
» May be enhanced by theme support

» Complexity of 12,000 LOC

Straight-forward attempt: Shrinking DOpE

Revisiting the implementation

= Keeping only essential functionality
— 7,000 LOC

We loose:

= Majority of widgets (grid, scale, scrollbar, etc.)
» Flexible command interface

= Coolness, fancyness, convenience

» Real-time support

7,000 LOC are too much for such a crippled GUI!

Bottom-up approach

What do we really need in the GUI server?

Widgets? — No

Font support? — No

Window decoration? — No

Textual command interface? — No

Look and feel, gradients, translucency? — No

Hardware abstractions (e. g., color-space conversion)? — No
Windows displaying pixel buffers? — YES

Distribution of input events? — YES

Secure labeling? — YES

Buffers and views

NITPICKER

User Input

User interaction

Input-event handling

= Only one receiver of each input event
» Focused view defines input routing
= Routing controlled by the user only

Client-side window handling

Report motion events to focused view while a button is pressed
— Client-side window policies (move, resize, stacking)
— Key for achieving low server-side complexity

Emergency break
— Special key regains control over misbehaving applications

W= Trusted path

It is not sufficient to label windows!

» A Trojan Horse could present an image of a secure window
= Not the secure window must be marked, but all others!

Revoke some degree of freedom from the clients

» Dedicated screen area, reserved for the trusted GUI
= Revoking the ability to use the whole color space

— X-Ray mode, activated by special key (x-ray key)

Trusted path (2)

=2 i 5> 60k - [

e e i

e g

testnit

e 5 il -5 Gt scout
launchpad

falldelol & d0zd Kbyted Lribyten]

liquid flo
nitpicker

alpha_log

Nitpicker results

Source-code complexity

| GUI server | Lines of code |

X.org > 80,000
Trusted X 30,000
DOpE 12,000
EWS 4,500
Nitpicker < 2,000

» Low performance overhead, no additional copy
» Low-complexity clients are possible (Scout: 4,000 LOC)

Nitpicker results (2

Support for legacy software
Protection against spyware
Helps to uncover Trojan horses
Low source-code complexity

— Poster child of a resource multiplexer

. Why do we need another operating system?

. Genode entering the picture

. Architectural Principles

. Core - the root of the process tree
. Inter-process communication

. Classification of components

. Kernelization example

. Components overview

Interfaces

LOG Unidirectional debug output

Terminal Bi-directional input and output
synchronous bulk

Timer Facility to block the client

Input Obtain user input
synchronous bulk

Framebuffer Display pixel buffer
synchronous bulk

Represents PCl bus, find and obtain PCI devices

Interfaces (2)

ROM Obtain read-only data modules
shared memory

Block Block-device access
packet stream

File_system File-system access
packet stream

NIC Bi-directional transfer of network packets
2 x packet stream

Audio_out Audio output
packet stream

| Session type | Location

Timer

os/src/drivers/timer

Block

os/src/drivers/atapi
os/src/drivers/ahci
os/src/drivers/sd_card
dde_linux/src/drivers/usb_drv

Input

os/src/drivers/input/ps2
dde_linux/src/drivers/usb_drv

Framebuffer

os/src/drivers/framebuffer/vesa
os/src/drivers/framebuffer/sdl
os/src/drivers/framebuffer/pliix
os/src/drivers/framebuffer/omapd

Audio_out

linux_drivers/src/drivers/audio_out

Terminal

os/src/drivers/uart

NIC

dde_ipxe/src/drivers/nic
dde_linux/src/drivers/usb_drv

PCI

os/src/drivers/pci

Resource multiplexers and protocol stacks

| Session type | Location
LOG | os/src/server/terminal_log
demo/src/server/nitlog
Framebuffer, | demo/src/server/liquid_framebuffer
Input | os/src/server/nit_fb

Nitpicker | os/src/server/nitpicker

Terminal | os/src/server/terminal_crosslink
gems/src/server/terminal
gems/src/server/tcp_terminal

Resource multiplexers and protocol stacks (2)

| Session type | Location

Audio_out | os/src/server/mixer

NIC | os/src/server/nic_bridge

ROM | os/src/server/rom_prefetcher
os/src/server/tar_rom
os/src/server/iso9660
os/src/server/rom_loopdev
os/src/server/part_blk
gems/src/server/http_block
File_system | os/src/server/ram fs
libports/src/server/ffat_fs

Protocol-stack libraries

Location

libports/lib/mk/libc.mk
libports/lib/mk/libc_log.mk
libports/lib/mk/libc_fs.mk
libports/lib/mk/libc_rom.mk
libports/lib/mk/libc_lwip.mk
libports/lib/mk/libc_ffat.mk
libports/lib/mk/libc_lock_pipe.mk
libports/lib/mk/libc_terminal.mk
qt4/lib/mk/qt_x
libports/lib/mk/gallium.mk

Runtime environments

Runtime

Location

Init

os/src/init

Loader

os/src/server/loader

L4Linux
L4Android
OKLinux

ports-foc/src/1l4linux
ports-foc/src/l4android
ports-okl4/src/oklinux

Vancouver

ports/src/vancouver

Noux

ports/src/noux

GDB Monitor

ports/src/app/gdb_monitor

Python
Lua

libports/lib/mk/x86_32/python.mk
libports/lib/mk/moon.mk

Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode

	Why do we need another operating system?
	Genode entering the picture
	Architectural Principles
	Core - the root of the process tree
	Inter-process communication
	Classification of components
	Kernelization example
	Components overview

